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1 Hidden symmetry 

Symmetry is one of those concepts that easily bridges the underlying themes of this conference: art, 
architecture and mathematics. Part of the fascination of Penrose tHings is their rather quirky kind of 
symmetry. But if one is pressed to describe exactly what this symmetry is, say group theoretically, 
one is likely to come up empty handed. Penrose tilings are aperiodic - they have no translational 
symmetries. They are not built upon simple repetition of a motif. Furthermore, in general Penrose 
tilings (there are infinitely many different ones) do not have 5-fold symmetry, though they have a 
strong feeling of "five-ness" about them. So in general they have no symmetries in the conventional 
way. 

However Penrose tilings, and all the other famous aperiodic tilings (Fibonacci, square-triangle, 
Robinson, etc) do have a hidden world of symmetry and it can be revealed in a very striking way: 
they are pure-point diffractive. 

Here is a picture of the diffaction pattern of a Penrose tiling. 
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Diffraction Image of a Penrose Tiling 

Which Penrose tiling? Actually all of them! They all have the same diffraction. Furthermore it 
is perfectly 5-fold symmetric - in fact, perfectly lO-fold symmetric. 

The way to look at this pattern is to interpret each dot as a spike, an infinite spike, located at 
the centre of the dot and weighted by a quantity equal to the area of the dot. So this is like an 
Indian bed of nails, where the nails are varying strengths. Technically it is an pure point measure. 

There are lots of articles on Penrose and other aperiodic tHings, but few of them address its 
remarkable diffraction - for the simple reason that it is not particularly easy to describe what it 
really is. The objective of this talk is to shed a little more light on this rather mysterious subject. 
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2 Repetition 

One of the striking features of a, say, a rhombic Penrose tiling is that it is repetitive. Simply put, 
any finite patch of rhombi (no matter how large) in the pattern repeats. In fact it repeats regularly 
in the following way: for each radius r there is another radius R so that for any patch of tiles of 
lying in any ball of radius r, a translated image of it is bound to occur in any ball of radius R. What 
you see once, you see again, and you don't have to go too far to find it. 

There is another sense, though, in which a Penrose tiling T repeats. T has no translational 
symmetry. But if t is a vector and T is translated by t to get t + T then one can ask to what extent 
it coincides with T. We can measure this say by comparing the area of perfectly lined up tiles to 
the total area - i.e. as the density of perfectly matched up tiles. 
Question: How good can we make this matching? 
Answer: As good as we wish. If 0 < € < 1 then there are t for which den « t + T) n T) > 1 - €. 

So Penrose tilings are aperiodic but nonetheless allow almost translations as close to perfect 
translations as you desire. In fact, just as for repetitivity, there is an R so that every ball of radius 
R has such a translation t in it. Of course R will be very large if € is very small, but in a strict 
sense the €-almost periods do appear in a regular (though aperiodic!) way. This is what is meant 
by almost periodicity. 

Almost periodicity in this sense is equivalent to pure point diffractivity, and the diffraction pattern 
is just a manifestation of it. 

The rest of this talk will be devoted to explaining this. There are three aspects to this: 

• the way in which group theory is still underlying the structure; 

• the physical nature of diffraction - why it is so relevant?; 

• the way in which the diffraction encapsulates the group theory. 

The first is easy to describe. For each t E JR2 let 'T1(t) denote the matching density of translation 
by t. For t = 0 it is 1 - the matching is obviously of full density. For most t it is zero - there are no 
tiles matched at all. But for a countable number of "good" t it is positive. Remarkably the set of 
all these good t actually form a group L under addition. L is a subgroup of rank 4 inside the group 
JR2 of all translations of the plane. (For a normal periodic structure in the plane we would expect a 
rank 2 subgroup to be carrying the symmetry.) The elements of L are not perfect symmetries, only 
partial ones, so we attach to each its measure of goodness: 'T1 : L ~ R So the notion of symmetry 
group needs to be modified by a goodness function. 

All this information can be assembled into one generating object - another bed of nails (formally 
the autocorrelation measure): 

'T1 := L 'T1(t)Ot • 

Nature does not give usa way of seeing this measure directly, but she does allow us to see its Fourier 
dual - and that is the diffraction. The last part of the talk briefly describes what physical diffraction 
does and what the resulting pictures mean. 

The talk will be illustrated with various tHings and their diffraction images, a schematic of 
diffraction experiments, and some recent diffraction images from real quasicrystals. 

566 


