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A kaleidoscope is obtained as the quotient of a space by the discontinuous action of a discrete group 
of transformations; this can also be obtained from a fundamental domain which characterizes it. In 
the present study, the specific case of the Hyperbolic Plane is analyzed with respect to the I).ction of 
a hyperbolic polygonal group, which is a particular case of an NEC group. Under the action of these 
groups, the hyperbolic plane is tessellated using tiles with a polygonal shape. The generators of the 
group are reflections in the sides of the polygon. Clear examples of quadrilateral tessellations of the 
hyperbolic plane with Saccheri and Lambert quadrilaterals -designed using the Hyperbol package created 
for Mathematica software- and are found in the basic structure of some of the mosaics of M.C. Escher. 

1. Introduction 

A group that acts on its own and discontinuously in space, in general, defines a domain. that 
characterizes it. Similarly, it would characterize the quotient of the space under the action on the 
gr()up, in which case it is called a kaleidoscope. The center of our interest in the specific case of 
the hyperbolic plane under the action of NEe (Non Euclidean Crystallographic) groups, which are 
subgroups of the group of non-Euclidean isometries that act on their own and discontinuously upon 
the hyperbolic plane ([12]). We shall study polygonal groups, a particular kind of NEC groups, 
in order to tessellate the hyperbolic plane using tile with a polygonal shape and reflections on the 
sides of these polygons as generators of the group. The connection between this mathematical 
formulation and the artistic construction of geometric designs is based on the M.C. Escher's graphic 
works, who developed unique techniques for creating mosaics in the hyperbolic plane. We will show 
some examples of tessellations with these polygonal groups, on the basis of which this artist made . 
his Cirkellimiet series. We also include an example done on the Poincare half-plane, though we do 
not develop the mathematical tool underlying it. Readers interested in the Poincare models of the 
hyperbolic plane may consult [3]. 

2. NEG Groups and Fundamental Regions 

Let X be the hyperbolic plane with the topology induced by the hyperbolic metric. The model 
we shall use is the open disc unit of Poincare D2. Let r be a subgroup of the group of hyperbolic 
isometries of X, I soC X). The action of r on X is the natural application cP : r x X -+ X, given 
by q,(" z) =,(z). For each z E X we denote the set e = {fez) : , E r} as the orbit of z by the 
action of r upon X. The action of a subgroup r on X gives rise to the following relationship: 
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\/z, wE X, z "" w <=? 3')' E r : w = ,),(z). 

This relationship"" is an equivalence relation on X, whose equivalence classes are the orbits of 
the elements of X by the action of r. The quotient set XI V'\ will be designated as r \ X and is 
called the orbit space. 

Definition 1 Let r be a subgroup of Iso(X). r is said to be an NEC group, that is, a Non­
Euclidean Crystallographic Group, if it is discrete (with compact open topology) and the orbit 
space is compact. 

If r is an NEC group, then its rotations have multiple integer angles of 21r In, with n E N, and 
they do not contain limit rotations that is, rotations whose center lies on the infinity line. 

The NEC groups are classified in agreement with their signature ([12]), which has the form: 

(g; ±; [mI, ... , mr ], {(nn, ... , nISI)' ... , (nkI' ... , nksk )}) 

where the numbers mi (periods) and nij (period cycles) are integers greater than or equal to 2, and 
g, r, k are non-negative integers. This signature determines a canonic presentation of the group r 
given by the generators: 

and the relationships: 

(i) Xi 

(ii) ei 

(iii) Cij 

(iv) ai, bi 
(v) ~ 

i = 1, ... , r 
i = 1, ... , k 
i = 1, ... , k 
i = 1, ... ,g 
i = 1, ... ,g 

j = 0, ... , Si 

(if the sign is + ) 
(if the sign is - ). 

(if the sign is + ) 
(if the sign is - ). 

The Xi isometries are elliptic, the ei isometries are generally hyperbolic, the ai, bi are hyperbolic, 
the Cij are reflections and the di are glide-reflections ([12]). 

The fundamental regions comprise the smallest tile that allow us to tessellate by means of the 
action of an NEC group. For this purpose we establish the following definition. 

Definition 2 ([3]) Let F c X be closed and r an NEC group. F is said to be a fundamental region 
for r if: 

i) for each z E X there exists')' E r so that ,),(z) E F 

ii) if z E F is such that ,),(z) E F, with')' 1= 1, then z, ,),(z) are in boundary of F 

iii) F = Closure(Interior(F)). 

It is important to point out that this definition is an improvement upon those used in [10] and 
[12], in the sense that we eliminate the cases of pathological regions having isolated points that 
correspond with other points of the fundamental region under consideration. 
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3. Tessellations of the hyperbolic plane 

Definition 3 Let r be a NEC group. A r-tessellation of the hyperbolic plane X, with the funda­
mental region P is a set of regions {Ii hEI such that: 

ii) int(Ii)nint(Fj) = 0 for i 'Ai 

iii) Vi E I,3, E r : Ii =,(P). 

In the study of subgroups of NEC groups,as well as int he tessellations of X, the following 
proposition is important: 

Proposition 1 ([11]) Let r by an NEC group and r' a subgroup of r with the index p (Ir : r'l = p). 
Let pr by a fundamental region for r. Then r' has a fundamental region pr' resulting from the 
union of p congruent replicas of pr and besides 1 r 1 .p = 1 r' I. 

From pr the fundamental region obtained for r' has the form 

p 

r' U r P = ,iP, 
i=l 

there the isometries ,1, ,2, "'"p have been chosen adequately in each of the classes of r /r'. That 
is , pr' can be construed from pr by successively joining it at the boundary to p - 1 'Yipr copies. 
Furthermore, if pr is connected, the ,11 ,2, .... "p can be chosen in such a way that Fr' is also 
connected ([11]). 

Polygonal groups are those that are generated by reflections in the sides of a polygon. Certain 
hyperbolic polygons give rise to NEC groups, and the hyperbolic plane is tessellated with them. 

Lemma 1 ([1]) Let al, a2, ... , ak be real numbers with 0 ~ ai < 1f' for each i = 1,2, ... , k. Then, 
there exists a convex hyperbolic polygon P with angles all a2, ... , ak if, and only if, 

k 

Eai < (k - 2)1f'. 
i=l 

To effect tessellations it is practical to bear in mind that the P polygons described in the above . 
Lemma have the following properties: 

a) the bisector angles of P are concurrent in a point 0 

b) there exists an inscribed disc with its center in 0 that touches all the sides of F. 

Theorem 1 ([10]) Let r be an NEC group. Then, there exists a convex polygon F that constitutes 
a fundamental region for r. 

The following Theorem can be considered the inverse of the previous Theorem when the group 
is polygonal. The method of proof used is noteworthy - it is based on the covering of the hyperbolic 
plane by means of a family of sets that fit together, constructed from finite unions of set with the 
orbits of the points contained in the covering. A demonstration of this can be seen in [5]. 

301 



Theorem 2 Let F be a convex polygon of k sides and interior angles 7r/ni, with ni E N, ni ~ 
2, for each i = 1,2, ... , k, with vertices I{ and sides determined by the segments I{-IPi where 
Po = Pk, satisfying 2:::;=I7r/ni < (k - 2)7r. Let (Ji be the reflection on the line containing the 
segment I{-II{ for each i = 1,2, ... , k. Then the group r generated by the reflections <Tl, 0"2, ... , (Jk 
(polygonal group) is an NEC group. Moreover, F is a fundamental region for r, with the signature 
(0; +; [-]; {(nl, n2, ... , nk)}), and whose representation is given by the following relationships: (J[ = 
1, Vi = 1,2, ... , k, ((Ji_l<Ti)ni - 1 = 1, Vi = 1,2, ... , k, with (Jo = (Jk and no = nk. 

In addition, the family {r(F) : 'Y E r} constitutes a r-tessellation of X. 

Example 1 Tessellation of the Poincare disk constructed by using a polygonal group: M.e. Escher's 
"Circle Limit I" (Cirkellimiet 1) ©2003 Cordon Art B.V.- Baarn - Holland. All rights reserved .. 

We can see polygons in the tessellation M.C. Escher's " Circle limit III" (Cirkellimiet III) @2003 
Cordon Art B.V.- Baarn - Holland. All rights reserved. It not is a constructed tessellation by using 
a polygonal group. 

4. Kaleidoscopic Saccheri and Lambert quadrilaterals 

The Saccheri quadrilaterals have two consecutive right angles on a side named base, and two 
equal and acute angles opposite to the base. The construction of the Saccheri quadrilateral can be 
solved by means of the translation of a point according a line which does not contain it. 

The Lambert quadrilateral is a quadrilateral with three right angles. The union of two Lambert 
quadrilaterals is a Saccheri quadrilateral: that is, it has two adjacent right angles and two equal 
acute angles. And, conversely, if in a Saccheri quadrilateral we trace the unique perpendicular line 
that is common to the base and the opposite side, we obtain two Lambert quadrilaterals, congruent 
by means of reflection with respect to the common perpendicular. 

We shall now consider the determination of the quadrilaterals of Saccheri and Lambert that can 
tessellate the hyperbolic plane. 
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Theorem 3 ([7]) For every R > 0 and n E N, n> 2, there exists a unique Saccheri quadrilateral 
with the base R and acute angles c.p = 7r In, unique up to congruence, that tessellates the hyperbolic 
plane. 

Example 2 As an example illustrating this situation, we show below tessellation of a Poincare disc 
by means of a Saccheri quadrilateral for c.p = i and R = 1, created with the Hyperbol package for 

Mathematica software that has been developed by the authors. 

Theorem 4 ([6]) For each R > 0 and n E N,n > 2, there exists a unique Lambert quadrilateral 
.c(P, Q, Q', P') withthree right angles, side P, P' or length R, and acute angle 4> = 7r/n, unique up 
to congruence, that tessellates the hyperbolic plane . 

. Example 3 As an example illustrating this situation, we show below two tessellations of the 
Poincare disc, created also with the Hyperbol package, using a Lambert quadrilateral for 4> = 7r I 4, 
and R ~ 0.881373. 
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Example 4 We use the Saccheri quadrilateral that is obtained from the union of the Lambert 
quadrilateral, of the above example, and its reflection with respect to the line that contains the 
segment of length R. This Saccheri quadrilateral is subjacent in the M.C.Escher's "Circle limit IV" 
(Cir-kellimiet IV) ©2003 Cordon Art B.V.- Baarn - Holland. All rights reserved. This work is based 
on the union of three consecutive triangles, which contain the figures appearing in this creation. 

5. Tessellations in the Poincare half-plane 

All the mathematical tools that we have described for D2 can be transcribed in the model of the 
Poincare half-plane denoted by H2. Both models are geometrically equivalent and the interested 
reader can find this equivalence in [3]. The Hyper-bol package, mentioned above, also features 
drawing tools to work on the half-plane. Their usefulness is evident when we regard some of the 
works by M.C. Escher based upon this model. Two examples follows: 
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Example 5 Tessellation of the Poincare half-plane, in the study work made with triangular groups 
([4]), M.C.Escher's " Regular Division of the Plane V" ©2003 Cordon Art B.V.- Baarn - Holland. 
All rights reserved. ( Woodcut VI / Houtsnede VI). 

M.C. Escher writes in [13] his ideas over the regular division of the plane: Before going on 
to discuss each of the illustmtions, I should like to indicate the method used in all of them except 
woodcut VI to represent the different systems ... This special difference for Woodcut VI over the 
precedent illustrations (woodcuts I - V) is the difference between the Euclidean Geometry and the 
Hyperbolic Geometry. 

For this woodcut, M.C. Escher writes: Woodcut VI is the only example in this series in which 
the division of the plane requires more than two shades. A complete survey of the possibilities of the 
regular division of the plane would need to contain at last twenty illustrations ... 

One of the M.C. Escher's finished works in the hyperbolic half-plane is the following: 

Example 6 M.C. Escher's "Butterflies" (Schmetterlinge) ©2003 Cordon Art B.V.- Baarn - Hol­
land. All rights reserved ([14]). This work is based on an easily recognizable polygonal NEC group. 

6. Conclusions 

We refer the reader to [3], which presents an electronic tool named HyperboW) whose com­
putational support is Mathematica software. This tool consists of modules that allow us to draw 
different hyperbolic constructions in Poincare's models for the hyperbolic plane, usually denoted 
by H2 and D2. Such constructions include reflections, rotations, translations, glide reflections, and 
the orbits of a point. These isometries and geometric loci act on the hyperbolic plane; and if a 
euclidean element appears in some representation of this plane, we shall note it in an explicit way. 

lSoftware available at http://www.ugr.es/local/ruiz/software.htm 
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