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Abstract 

We investigate discrete versions of hyperbolic geometries which arise at interfaces within art, mathematics, physics 
and other disciplines. A softening from algebraic isometries to analytic inequalities gives a simple way to capture the 
hyperbolic spirit using Euclidean notions. 

1. Introduction 

Grid geometries and their transformations have a long history in art, science, music and mathematics. For 
example, in music the visualization of tonal space is nearly always discrete [Hoo], while in DUrer's art 
(noted by Sharp [ShaD grids were used to transform faces Figure 1, and the physics of crystals as well 
occurs on a regular lattice .. 
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Figure 1: Diirer heads 

All of these situations correspond mathematically to discrete graphs in Euclidean geometry of one, two or 
three dimensions which are translation invariant. The currently controversial tome "A New Kind of 
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Science" by noted physicist and Mathematica creator, Stephen Wolfram, actually contends that all 
physical events should be thought of as taking place in the discrete universe of cellular automata [Wol). 

It is a general belief that whenever discrete geometries turn up they are either Euclidean or fractal in 
nature. While this is often the case, it is by no means exhaustive as it fails to include the rich landscape of 
hyperbolic phenomena. Continuous models of hyperbolic geometry occur frequently in mathematical 
physics and have been extensively studied. On the other hand the ideas of discrete hyperbolic geometry 
are more recent and still under examination. 

2. Discrete Hyperbolic Geometry Outside of Mathematics 

In chemistry, a polymer is basically a huge molecule of hundreds or thousands of smaller molecules in 
repeating units. These polymers can be found in ideal shapes as either flexible coils or rigid rods, as 
shown in Figure 2. 

/ 
Figure 2: Polymer chains [AT] 

At an interface these chain-like objects when put in a solution, adsorb to the wall and form grids whose 
mesh size at distance z from the wall is approximately z [deG). Some resulting geometries and their 
dependence on the interfaces are illustrated in Figures 3 and 4 below. 
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Figure 3: Absorbed polymer layer Figure 4: Reflected absorbed polymer layer 

What is interesting about these structures is the growth of neighboring meshes. For example, in Figure 3 
block A has 5 blocks attached, 13 blocks two away, and looking toward the boundary it is easily seen to 
have at least 2n blocks within a distance of n. This exponential growth in the number of neighbors from a 
graph theory point of view indicates that we are dealing with a hyperbolic geometry, since in Euclidean 
geometry area grows polynomially. In a hyperbolic sense there is no real difference between the above 
figures, since both have boundaries which are not attainable using a finite number of cubes. The only 
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difference is that Figure 4 is in a strip-like region while Figure 3 takes place in a half-plane. 

Analogous geometric structures appear as well in the biology of some biofilm formations, where bacteria 
position themselves following a pattern similar to Figure 4. 

In art, there are numerous examples of artists decomposing space with shapes whose sides are more or 
less proportional to their distance to boundaries. This is especially true in modem art, and can be seen in 
the works of abstract artists such as Kasimir Malevich or Piet Mondrian shown belo. 

Malevich: Suprematist Composition 1914 Mondrian: Composition 1915 

3. Rigid Hyperbolic Space in Mathematics 

The invention of hyperbolic geometry, credited to both Bolyai and Lobachevski, is one of the great 
accomplishments of mathematical thought. The idea of this non-Euclidean geometry is so daring that 
many historians believe Gauss himself had deduced its existence, and kept it hidden so as not to upset the 
culture of the time. 

A now classical approach to introducing non-Euclidean geometry and its behavior is based on the upper 
half-plane model of Henri Poincare. Beginning with pairs of real numbers {(x,y), y>O} as the underlying 
points one simply declares that the maps that will keep relative distances invariant, called isometries, are 
compositions of particular reflections in circles. Reflection in a circle, also known as inversion, is defined 
for a fixed circle C, with center Z and radius r to map the point P to P' in such a way that Z, P and p' are 
collinear, and ZP.ZP' = fl, as in the figure below. . 

p 

Figure 5: [Stl] 

In the Poincare model, the isometries (distance preserving maps) are built up from the reflections in 
circles having centers on the x-axis or reflections in vertical lines, which can themselves be thought of as 
reflections in circles with infinite radii. This construction captures many of the natural aspects of 
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Euclidean geometry. Thus, the lines (also known as geodesics) for the upper half-plane non-Euclidean 
geometry are the semicircles with center on the x-axis or vertical lines. 

Figure 6: Some non-EucHdean Hoes 

An example of non-Euclidean behavior is illustrated in Figure 6. Here we see two lines, M and N, 
passing through P neither of which intersect L, that is we have two distinct lines parallel to L, containing 
the point P. An important consequence of this multiplicity of parallel lines is that compositions of 
reflections in nonintersecting lines produce a more complex behavior than the simple translations of 
Euclidean geometry. In turn, this unusual behavior leads to an exponential growth of a circle's area as a 
function of its radius. The very modem spirit of describing geometry, hyperbolic or otherwise, as arising 
from compositions of actions of reflections is essentially due to Felix Klein in the 1870's [Sti]. This 
process approach to geometry, focusing on actions instead of elements, must fit in nicely with Leonard 
Shlain's physicist Feynman and artist Pollock [Shl]. 

Reflections in circles are also intimately related to harmonic analysis and especially complex analysis. A 

prime example of this connection can be seen in the double nature of the function f(z) = ~ . The 
z 

functionf(z)is coanalytic, and hence is a harmonic function away from z=O; at the same time it 
represents the reflection of a point z with respect to the circle of center (0,0) and radius 1. Complex 
analysis is further connected with hyperbolic geometry in that the distance preserving maps of the 
hyperbolic plane also preserve angles, and so it is possible to transfer the geometry of Poincare's half
plane model to other regions using angle-preserving (conformal) maps. One classical way of applying this 
approach is to define the hyperbolic "plane" on the unit circle with "lines" being circular arcs 
perpendicular to boundary, as shown in Figure 7. Another example is given in Figure 8 showing a 
geodesic, constructed with the mathematical software package Matlab, for the hyperbolic geometry on a 
polygon via the Riemann map from the upper half-plane. 
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Figure 7: non-EucHdean segment S joining Zl and Zz Figure 8: non-EucHdean segment joining A and B 
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4. Softening the Hyperbolic Plane 

The insights of the Klein method are a very powerful approach to geometry, yet they are removed from 
our everyday experience. The tools to do hands~on measuring of quantities, such as length and volume, 
are often buried within an abstract setup. One way to regain the arithmetic of hyperbolic geometry is to 
replace continuous sets with approximating discrete sets (graphs), and isometries with quasi-isometries. 
[Coo] This current geometric viewpoint, known as softening, can be carried out by decomposing a 
region into squares satisfying two basic properties. First, the size of any square in the decomposition is 
comparable to its distance to the boundary, and second, adjoining cubes differ in side length by at most 
a factor of two. The existence of such decompositions is guaranteed by a now classical theorem of 
Whitney [Ste]. A distance between cubes can then be defined as the length of a chain which connects 
them using the fewest cubes. Paths with this chain distance are close to hyperbolic lines, as is seen in 
Figure 9. 

Figure 9: Cubes versus non-Euclidean from a to b 

For the upper-half plane, decompositions of this type occur in many self-similar structures in physics, 
recall Figure 3-or in mathematical art as in Figure 10, where the boundary is represented by the bottom 
line. 

Figure 10 

There are numerous tradeoffs in exchanging an equals sign in geometry, originating with Descartes' 
coordinates, for the inequalities of analysis and counting popularized by M. Gromov [Coo]. A square 
decomposition is not unique, symmetries and transformations are harder to defme using inequalities, 
and ideals such as points and lines exist only as limits. On the other hand, many natural examples 
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exhibit discreteness, so therefore a discrete hyperbolic geometry is useful in highlighting buried 
geometric information. For example looking at Figure 8, one sees the non-Euclidean line for the 
polygon, but two facts are hidden in here. It is unclear whether a small piece cut far away from A and B 
would change the line segment significantly; a second mystery is: which points are in a neighborhood 
of the geodesic. On the other hand with a square decomposition of the same region, as given in Figure 
11, it looks evident that small changes or perturbations far away from a chain do not have a significant 
impact on paths, since the decomposition contributing to the chain remains unchanged. Additionally, it 
is also easy to see which points are near a geodesic, as the squares themselves are the geodesic. 

Figure 11 

5. Conclusion 

In this paper we explored the presence of discrete hyperbolic geometries in the arts and sciences. We 
underlined the existence of discrete hyperbolic structures in chemical physics and we show how these 
ideas are also found in art. We discussed the evolution of hyperbolic geometry, arriving at a modem 
approach of softening, which uses quasi-geodesics and discrete models to reveal interesting geometric 
information, which can be hidden by an abstract continuous model. 
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