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Abstract 

We modify the behaviour of the virtual ant introduced by Langton [1] by forcing it with periodical binary 
sequences. The turning direction of the ant at the ith iteration depends on whether the ith element of the 
binary sequence is zero or one. An overwhelming variety of frieze-like trajectories is obtained. Thus, this 
system is a novel prototype of high complexity resulting from simple rules. If the forcing is described by a 
real-valued parameter p, then any computationally feasible change t:::.p renders completely different patterns. 
Thus, sensitivity with respect to the control parameter can be conjectured to be infinitely large. 

Introduction 

A well-known cellular automaton model that has been used in artificial life research is Langton's 
. ant (see [1-7]). Its behaviour is defined on a two-dimensional square grid, as illustrated in Fig. 1a. 
The ant heads in one of four possible directions. If it enters a white square, it turns 90 degrees to 
the left and paints this square black. If it enters a black square, it turns 90 degrees to the right and 
paints this square white. Disordered patterns appear until 9977 iterations. Then, unexpectedly, 
the ant moves periodically in one of the four possible diagonal directions (as e.g. in the upper left 
of Fig. 1 b). It has been rigorously shown [7] that the temporal period T on this periodical pattern 
is T = 104 steps. 

It is instructive to point out that Langton's ant can be considered as a very simple description 
of a physical particle in a scattering environment. In fact, in so-called Lorentz lattice gases appear­
ing in statistical mechanics, scatterers can be assumed to be distributed on a lattice; a scatterer 
is changed after a particle interacts with it [8-10]. Langton's ant would correspond - in a highly 
simplified model - to a particle that is scattered 90° to the right or 90° to the left, these directions 
being reversed (due to modification of the scatterer) after each scattering event. Related descrip­
tions can be used for charged particles within inhomogeneous magnetic fields, e.g. in a turbulent 
magnetized plasma [8]. 

A number of studies [2, 5] have been devoted to a particular generalization of Langton's algo­
rithm. In this generalization, n states k = 0,1,2, ... , n -1 are considered, instead of just two states 
(black and white). After the ant leaves a cell in state k, this state changes to k + l(modulo n). 
A rule-string (length n) of O's and 1 's is given. If Tk is the kth bit of that string, then the ant 
turns to the right if Tk = 1 and to the left if Tk = O. It could be shown that the ant's track is 
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always unbounded, provided the rule-string contains at least one 1 and one 0 (see also [2, 5]). An 
interesting result of the generalization to n states with n ~ 3 is the appearance of a large variety 
of complex patterns with bilateral symmetry [4, 5]. 

b) 

Figure 1 : Langton's ant. a) Initial steps. b) Periodical pattern (upper left) following a transient 
disordered pattern (partially shown in the lower right). 

In this contribution we present a different type of generalization. It consists in maintaining the 
number of statesn = 2, but introducing infinitely long periodical sequences {rm} of O's and l's, 
which are applied as follows; the mth element of that sequence is considered at the mth iteration 
(m = 0, 1,2, ... ); if rm = 0, then the ant behaves as in Langton's case (Fig. 1); if rm = 1, then the 
ant will turn to the left if it enters a black square and to the right if it enters a white square. As 
in Langton's algorithm, the square will always change its colour after the ant turns by 90 degrees. 

We shall consider two types of periodicities of the sequence {rm}: 
Forcing type A: 
A string of j O's is followed by a single 1, then by j O's, and so on. (Example: for j = 3, 
r m =0001000l0001...). 
Forcing type B: 
The iteration 

Xm+1 = (xm + p)mod 1 (1) 

is performed. The Xm and the parameter p are real numbers in the interval [0,1]. We set Tm = 0 
if 0 :5 Xm :5 1/2 and rm = 1 otherwise. Xo is set to 0.2. Note that Langton's ant corresponds to 
the case p = O. The intention behind this procedure is to study the sensitivity of the outcome in 
dependence of a continuous parameter (p in our case), which can be subject to arbitrarily small 
perturbations. 
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Since calculations are performed with a finite number of digits, we can write p as a rational 
number p = NID. It is easy to show that the denominator D is a period of the sequence {rm }. In 
fact, Eq. (1) can be written as 

Xm+l = (xo + mp)mod 1 . 

D is a period if and only if 

Xm+l+D = Xm+l 

{:} (xo + p{m + D)) mod 1 = (xo + pm)mod 1 

pD=N,NeN 

p=NID 

(2) 

(3) 
(4) 

(5) 

(6) 

Note that the smallest possible forcing period T is given by the smallest possible denomina­
tor D fulfilling Eq. (6), which appears if Nand D are relatively prime. We will always let the 
ant start in a completely white array of cells, except in cases (exemplified in this report only in 
Fig. 3) in which we examine the effect on the ant's track asit moves from a white into a black array. 

Results 

Figs. 2 through 4 illustrate the overwhelming variety of frieze-like patterns we obtained after the 
initial disordered transient. The patterns are shown here at different scales and are rotated differ­
ently, so that they are all displayed horizontally. The actual direction of the ant's track or "frieze", 
with respect to the x-axis is given by IP in Table 1. The height of the pictures after rotation (angle 
IP) is given by H in Table 1 (the unit is the length of the side of the square cells). Note that 
after rotation the contents of the cells are positioned on an horizontally aligned grid, so that H 
is an integer. Table 1 also indicates the type of forcing (A or B, as described in the preceeding 
paragraph), the parameters p (for B) or j (for A), the forcing period T, the temporal period T of 
the frieze and the time Td of transient disorder before the ant's track becomes periodical. 

A transformation of the shape of the frieze by letting the ant move from a grid containing only 
white cells into a grid consisting only of black cells is illustrated in Fig. 3. The two rows for Fig. 
3 in Table 1 correspond to the two periodical trajectories described by the ant, as shown in the 
figure. Depending on the forcing sequence and on the phase at which the ant reaches the black 
region, we also found reflection, diffraction, parallel displacement or disordering of the ant's track. 

The fact that p can be varied continuously in Eq. (1) allowed to investigate the effect of very 
small changes in p. We found that the shape of the frieze· changed considerably, no matter how 
small was the change in p. A first example is Fig. 2h, as compared to Fig. 2b, withp differing 
by 3.10-5. Another example is Fig. 2v, as compared to Fig. 2b, the difference in p being 10-5. 

Outcomes involving even smaller changes in p are illustrated in Fig. 4. Fig. 4a and Fig. 4b were 
obtained by changing p corresponding to Fig. 2b by -5 . 10-6 and 5 . 10-6 , respectively. Fig. 4c 
was obtained by changing p corresponding to Fig. 2s by 2 . 10-6• Smaller changes of p were not 
possible because they yielded so large denominators T (recall p = NIT) that the track periods 
became prohibitively long for our computational facilities. Complications arising from long periods 
did occur, for example in the case of Fig. 2m (T = 107); here, the track shown in the figure changed 
later on; however, we had to break off calculations due to our limited computational time; therefore 
we are not sure whether Fig. 2m is part of a longer periodical track or if it is a transient ('P and H 
. are given for the displayed fragment in this case). 
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I Fig. I I p,j T I TIT 

2a B 0.05101 105 7 2122 0 114437 

2b B 0.09012 2.5.104 3 353 270 413410 

2c A 1393 1394 66 489 31.2 121187 
2d B 0.2822 5000 11 572 90 6407241 
2e B 0.05106 5.104 23 1518 180 149108 

2f B 0.34911 105 2 1378 294.9 16527 

2g B 0.34293 105 3 1935 0 37940 
2h B 0.09015 2.104 3 639 0 11058 

2i B 0.207 1000 5 129 90 461101 

2j B 0.3139 104 11 774 0 77792 
2k B 0.16202 5.104 14 991 24.4 228863 

21 A 1541 1542 2649 1627 325.8 17632 
2m B 0.1579999 107 117 1039 315 ?17 
2n B 0.15799 105 8 3080 310.9 1752 
20 B 0.12932 2.5.104 2 1403 74.6 12410 

2p B 0.1622 5000 3 800 90 18253 
2q B 0.34681 105 1 1148 0 61109 

2r B 0.281 1000 17 515 270 35 
2s B 0.34926 5.104 1 696 24.3 73318 
2t B 0.3488 625 234 925 85.1 54678 

2u B 0.736 125 8 126 250.6 2932039 

2v B 0.09013 105 2 2232 312.4 7528047 

2w B 0.40682 5.104 1 639 90 213849 

2x B 0.276 250 5 97 225 0 

3 B 0.036 250 1 22 315 705 
24 70 270 

4a B 0.090115 2.105 1 857 180 1776685 
4b B 0.090125 8000 9 250 0 3432697 
4c B 0.349262 5.105 3 3964 180 3381524 

Table 1: Forcing type (second column), parameter (third column) and features of the friezes shown 
in Figs. 2 through 4. The parameter p corresponds to forcing type B; the parameter j corresponds 
to forcing type A. Questionmarks indicate that the pattern may be a transient. 

Conclusions and future work 

The generalization of Langton's ant presented in previous works (n ~ 3 states and a rule-string of 
finite length n) yielded a large variety of symmetrical patterns during the transient phase before 
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giving way to a periodic pattern [3-5]. By contrast, the generalization presented here yielded a sur­
prising variety of periodical patterns; moreover, these periodical patterns have a pleasing aesthetic 
appearance. 

It is noteworthy that any small change in the value of the parameter p - up to the constraints 
imposed by our computational resources - leads to a completely different periodic pattern. This 
result reminds us of dynamical systems with "riddled basins" [11, 12], which render different at­
tractors for arbitrarily small changes of a control parameter. However, the unpredictability found 
in the present work is more drastic because for riddled basins the probability of attaining the same 
attractor increases as the parameter difference decreases, which is not the case here. Note, however, 
that for riddled basins different attractors can be obtained for arbitrarily small changes of control 
parameters as well as from initial conditions, while the ant's tracks are mainly affected by changes 
of the control parameter. 

The work presented here also brings to mind Joseph Marie Jacquard's method (devised around 
1800) to generate complicated periodical patterns in woven fabrics using punched cards. In fact, 
cards have holes (l's) and no-holes (O's). Charles Babbage and Lady Ada Lovelace (Lord Byron's 
daughter, born 1815) used Jacquard's principle to supply instructions for their engines and calcu­
lating programms,which are considered as seminal in the history of computer science (see [13]). One 
should keep in mind that there is a direct correspondence of strings and patterns in Jacquard's ma­
chines, while our ant walks back, deletes and remakes patterns so frequently (e.g. Fig.1a), so that 
there is no obvious correspondence between our binary strings and the complex emergent friezes (in 
particular, this can be seen in Fig. 3). Nowadays inmense amounts of patterns can be generated 
on monitor screens by letting the computer scan possible strings; this allows a selection by the user 
comparable to that of a photographer who selects a contest-winning picture by walking through 
the world with his camera. It is a philosophical or semantic matter to decide if such a selection has 
to do with "creativity". In any case, the massive automatic generation of novel patterns by the 
computer can lead to surprises and such surprises may well enrichen a designer's collection. 

Note another interesting outcome of this work: the periodical forcing, as introduced in the 
present work, in some cases considerably reduces the number of transient steps occuring before a 
periodical track emerges. This is seen by comparing Td in Table 1 with the 9977 disordered tran­
sient steps of Langton's ant. In one case we found the astonishing result Td = 0 (Fig. 2x), meaning 
that no disordered pattern occurs at all. In other cases, Td is highly increased, as compared to 
Langton's ant; one example is Td = 7528047 (Fig. 2v). 

For future work we propose to try other types of forcing, e.g.: i) T /2 1 '5, T /2 O's, T /2 1 's, ... ; 
or ii) interpreting a periodic sequence of O's and 1's to mean: leave the color unchanged when 0 
but change the color when 1. 

We want to close with the remark that we are dealing here with a novel prototype of complex 
pattern formation resulting from extremely simple rules. This is the most dramatic difference to 
Jacquard's mechanism, in which the complexities of the patterns and of the punched cards are 
comparable. In contrast, the emergence of complexity described in the present work is to be added 
to the list of amazing phenomena found in other cellular automata [14), in biological morphogenesis 
[15] or in Lyapunov diagrams [16-18]. 
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c) d) 

f) 

g) h) 

i) 

Figure 2 : Frieze-like patterns generated from Langton's ant, after it was modified to respond to a 
periodically changing parameter. 
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j) k) 

1) 

m) 

n) 

Figure 2 (continued) 
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q) 

r) 

s) 

t) 

Figure 2 (continued) 
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u) v) 

w) x) 

Figure 2 (continued) 

b) 

Figure 4 : Ant tracks resulting from small perturbations of the forcing parameter p. 
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Figure 3 : Ant. mo­
ving from a white 
to a black grid. 


