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Abstract 

BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

"Volution" refers to a series of shell-like modular sculptural elements embedded in a cube. They all have 
similar edge-patterns consisting of quarter-circles on faces of the unit cube, and on the inside they exhibit 
several, possibly warped, saddles and tunnels. This paper discusses the origin of these designs and their 
evolution and development into constrained minimal surfaces and into potentially large-scale, 
freestanding sculptures. 

Figure 1. (a) Volution_O, (b) stack of two mirrored Volution_l, (c) Volution_5. 

1. Introduction 

Webster's Dictionary defines volution as: 1) a spiral turn or twist, 2) a whirl of a spiral shell. 

Here, Volution is used as the name for a family of constrained minimal surfaces embedded in a cube, 
exhibiting several possibly warped saddles and tunnels (Fig. 1 ). On each of the six cube faces, the edges of 
these surfaces exhibit two quarter-circles around opposite corners with radii equal to half the edge length 
of the cube. Depending on the mutual orientation of this pattern on the six cube faces, different overall 
edge patterns will result. Originally my attention was focused on the case where all twelve quarter-circles 
form a single, closed, asymmetrical cycle that forces the spanning surface to form two twisted 
interlocking valleys with a single strongly warped saddle at the center. The development of this surface 
has many roots, which will be discussed in Section 2. A systematic taxonomy of the various other edge­
patterns is attempted in Section 3. Subsequent sections demonstrate the evolution of spanning surfaces 
embedded in these edge cycles, from simple warped disks to higher-genus forms, as multiple tunnels and 
additional saddles are added between the flanges of the disk. Finally, the problems associated with 
stacking such Volution modules in one or more directions are discussed, as well as the constraints on the 
surfaces to make this possible with G1 (tangent-) or G2 (curvature-) continuity, so that these surfaces can 
be turned into modular sculptural or architectural elements. 
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2. Background 

The Volution forms embedded in these curvy edge-patterns in a cube have many independent 
conceptual roots, and there were several stimulating events that led to the study of these shapes. 

Thelggle 

In Fall of 1999, when I visited NC State University, I was shown a design by Professor Percy Hooper 
in the Industrial Engineering Department for a modular cubical brick, locally referred to as the Iggle 
(Fig.2). This model had six pairs of quarter-circle flanges on the faces of a cube, and the space between 
them was modeled with some smooth surface patches. I was given a boundary representation of this shape 
in STL format and used our FDM machine [16] to fabricate a physical model. Since the curved patches 
were not joined with tangent continuity, some ridges are apparent on the saddle surfaces. With this object 
in hand, I started to wonder, how one could model a surface with completely smooth Valleys, and what an 
infinitely thin surface would look like connecting similar quarter-circle arches on a cube surface. 

Figure 2. (a) 1991e part designed by Percy Hooper [6}, (b) Schoen's F-RD Surface, (c) Schoen's 
Batwing Surface, (d) two o/Brakke's Pseudo-Batwing modules[2}. 

Triply Periodic Minimal Surfaces 

A web page by Ken Brakke [2] describes several triply-periodic minimal surfaces. A few among them 
also have edge patterns consisting of more or less circular arcs on the faces of a cube. However, the pairs 
of arcs on the cube faces are oriented differently from the boundary of the Iggle, leading to different 
connectivity between the individual edges - and typically to more symmetrical structures. 

In particular, Schoen's F·RD Surface is a unit cell with tetrahedral symmetry (Fig.2b). It may be 
viewed as a central chamber from which tubes extend to four alternating (tetrahedral) comers of the cube. 
This is actually only one eighth of a complete lattice cell with translatory symmetry; the complete cell is 
obtained by mirroring this sub-cell on its faces. Also, the edges are not strictly circular, when the surface 
area is minimized in the larger lattice cell. However, this cube-like base domain would still make a nice 
modular building element. 

Another related element is the Batwing Surface. It was given this name, because of the peculiar shape 
of the fundamental regions shown outlined on the surface in Figure 2c. Twenty-four of those regions 
make the complete cuboid element shown. Again, this is only 118 of the complete minimal surface lattice 
cell. Brakke then assembled two of these cells in a different way, using a C2 symmetry operation with 
axes along the face diagonals of the cube. This produces a slightly different geometry for the fundamental 
region, which he calls Pseudo Batwing Surface (Fig.2d). 

In Schoen's F·RD Surface (Fig.2b) the twelve quarter-arcs form four closed circuits around four 
alternating comers of the cube. In the Batwing elements, the twelve edges are connected into a single 
closed circuit. This is also true for the Iggle, but the actual connectivity, and thus the symmetry of the 
overall object is different. Batwing has cyclic C3-symmetry around one space diagonal of the cube, 
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whereas Jggle has D2 symmetry, comprising three mutually perpendicular C2 rotation axes. It is natural to 
ask, what the genus-O minimal surfaces within these two edge patterns would look like, if the edge 
patterns were forced to be comprised of exact quarter circles; this is known as Plateau's problem [11]. 

Stewart's Surface 

In March 2001, Jeff Hrdlicka [7] sent me pictures of an intriguing surface created by P. J. Stewart 
(Fig.3a). Starting from three mutually perpendicular circles, forming the wire· frame of a spherical 
octahedron, Mrs. Stewart used wire-mesh loops to build ribbons following an Eulerian edge path that 
covers every edge once and touches every vertex exactly twice. She then created further wire loops to 
broaden that ribbon along the edge cycle and continued until the surface smoothly connected in the center 
of the octahedron (Fig.3a). To understand the pictures received, I emulated this process in a wire frame of 
a polyhedral octahedron, filling in the surface with scotch tape. It is fascinating to see, how the ribbons 
join naturally in the middle, and how the logic of the surface emerges without ambiguity. I then emulated 
that shape with a subdivision surface and produced an FDM maquette (Fig.3b). Once I had the physical 
model in hand, the central part of the surface looked oddly familiar. 

Aurora 

Figure 3. (a) P.J. Stewart's Surface, (b) FDM sUrface in Octahedron, (c) Aurora sculpture, 
(d) Aurora's stveep path on the sphere. 

In the winter of 2000, I had worked on the Viae Globi series [14], a study of sculptural models based 
on various loopy curves on the surface of a sphere. This work was inspired by Brent Collins' Pax Mundi 
[3] and thus mostly featured narrow, channel-like, swept paths along such spherical splines. However, in 
other instances, I also had used just flat, ribbon-like cross sections. In one sculpture, called Aurora 
(Fig.3c) I had oriented that ribbon in such a way that one of its edges always pointed toward the center of 
the sphere; that ribbon resembled the curtain-folds that one occasionally sees in an aurora borealis. In 
some preliminary studies, I had extended that ribbon fairly close towards the sphere center and wondered 
how I might smoothly close the resulting rugged hole. With copious use of scotch tape, I was able to form 
a highly twisted saddle to do the job. 

A Common Theme 

When I later compared the sweep path for Aurora with the edge pattern of Stewart's surface, it turned 
out that Aurora's spline path was simply a smoothed version of the Eulerian path on the octahedron. The 
deftning sweep curve of Aurora used a cubic B-spJine on a sphere with twelve control points that lay on a 
path very similar to that of a spherical octahedron (Fig.3d). Suspecting further, that the Jggle surface was 
also a close relative, I later found that a central projection of its edge pattern onto a sphere also produced 
a very similar curve. All of the rim shapes of 1991e, Stewart's surface, and Aurora, are topologically 
equivalent to a simple circle, and thus their interiors can be spanned by some warped disk, which at the 
center exhibits the shape of a helically twisted biped saddle. This shape can also be understood as a 
progression of individual biped saddles that form a warped canyon. 
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3. Charting AU Possible Edge Cycles 

Rotating the edge patterns on some of the cube faces by 90° will lead to differently interconnected 
edge cycles. We have seen two patterns that connect all twelve arcs into a single edge-cycle. How many 
different such patterns are there? What kinds of (minimal?) surfaces can be embedded in them? And 
which ones of them do have aesthetic merits as a sculpture? We start the systematic exploration of all 
such Volution surfaces by first constructing all possible edge patterns. 

Keeping one cube face fixed and rotating some of the others individually by 90°, leads to 32 different 
configurations that must be examined. One can quicldysee that many of them are equivalent. To classify 
all possible configurations, we start by counting the number of individual edge cycles in each pattern; 
among those we can then easily distinguish eight different geometrical constellations (Table 1). These 
patterns are illustrated in Figure 4 on the unfolded nets of the bounding cubes. 

a e . e eren 12eCY4 epa rns . T bI 1 Th dit1i t ed cl tte 

"4" 1 instance 4 ears in tetrahedral configuration Fig.6a 

"3b" 2 instances 3-fold symmetrical Costa surface Fig.6c 

"3a" 6 instances 1 trench plus 2 ears Fig.6b 

"2b" 3 instances 2 trenches = Mace configuration Fig.5b 

"2a" 12 instances C-valley plus a single ear F!g.6d 

"Ie" 2 instances 3~fold symmetrical Gabo curve Fig.2c 

"la,b" 6 instances Left- and right-handed Iggle curves Fig.la 

"ears'· "trenches" ---.... 
2b 

Figure 4. Eight generic edge configurations out of 32 possible ones. 

Edge cycles can be of length 3, 6, 9, and 12 quarter-circles. Cycles of length 3 form "ears" around a 
single comer of the cube. Length-6 cycles either connect two adjacent ears into a "trench", or they form a 
wavy equatorial "belt". The cycle of length 9 forms a "C-shaped" valley; and the full-length, 12-edge 
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cycle can either separate two warped Z-shaped valleys as in the Iggle, or it can form an oscillating, 3-
period Gabo curve [14] around the equator as in the Batwing modules. In summary, only the eight 
combinations shown in Table 1 can occur under all possible orientations of the cube faces. In the 
following, we will discuss these basic edge patterns and illustrate them with suitable spanning surfaces. 

4. Simple Spanning Surfaces 

Volution shells are all spanning surfaces in one of the above boundary component patterns. In general 
there exist several different spanning surfaces for each pattern. We will start by describing the simplest 
surfaces that do not reduce the symmetry group defined by the given edge pattern. 

For a single-cycle edge pattern, the simplest surface has the topology of a disk, i.e. is of genus O. Such 
a surface can be constructed by connecting all points on the edge cycle with straight line-segments to the 
center of the cube, and then "relaxing" this surface into a minimal surface in the Surface Evolver [1]. For 
cases "la" and "lb" we obtain the basic genus-O Volution shell (Fig.1a). For case "lc", resembling a 
third-order Gabo curve [14], a 3-fold symmetrical monkey-saddle is formed at the cube center (Fig.8a). 

A spanning surface between multiple boundary components may correspond to an annulus or a disk 
with multiple holes (all still genus 0). For our edge patterns, the resulting 3D shapes typically exhibit 
some tunnels, and it is somewhat tricky to figure out how many of them correspond to topological 
handles that will add to the genus of the surface. With only two boundary components, as in pattern "2b", 
the simplest surface may look like a buckled cylinder (Fig.5a), which could then be smoothed into a shape 
resembling a piece of a single-shell hyperboloid (Fig.5b). 

However, since valleys formed by edge cycles comprising more than 3 quarter-circles yield two or 
more "lobes" near the comers of the cube which are separated by narrower "gorges" near the face centers, 
it is more "natural" (emulating the shape of a soap mm) to terminate any tunnels in the centers of these 
lobes, rather than in the middle of a constriction. Maintaining the symmetry defined by the edge pattern, 
will add further constraints; e.g., for the case "2b", the two trenches should be connected either by four 
tubes placed along space half -diagonals of the cube, leading to a central cavity; this forms a surface of 
genus 2 (Fig.5c). Alternatively, we could run four tubes parallel to the face diagonals of the cube, 
resulting in a genus-3 surface (Fig.5d). 

Figure S. Three different spanning surfaces for edge pattern "2b": (a,b) genus 0 (SliDE simulation 
& FDM model), (b) genus 2 (subdivision surface), (c) genus 3 (minimal surface). 

The maximum number of edge cycles that can occur is four. There is only one such pattern "4", and it 
exhibits tetrahedral symmetry. We can readily fit a genus-O surface of the type shown in Figure 2b into 
this pattern using space-diagonal tubes (Fig.6a). Alternatively the four ears could be connected in pairs by 
six tubes following the edges of a tetrahedron, creating a genus-3 surface without loss in symmetry. 

By rotating a single cube face, two of the four "ears" are connected into an elongated ''trench'' and a 3-
cycle pattern results; there are six occurrences of this pattern "3a" in the complete survey. In Figure 6b we 
have used 5 face-diagonal tubes to connect the two ears (top) to the trench (bottom) and to each other. 
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This also forms four space-diagonal openings between the ears and the trench, which lead to a central 
chamber. This is a suiface of genus 3. 

For the case "3b" the two 3-edge ears are on different sides of the larger, equatorial cycle formed by 6 
quarter-circles. This configuration has D3d symmetry just like the Gabo-3 configuration. However, it has 
the basic edge configuration of a Costa surface [5]; thus it seems natural to try to·embed such a surface 
into this cubical cell. Because of the inherent C3 symmetry of the edge pattern, it is natural to chose a 
genus-2 Costa. surface [5], where the two funnels coming in from either end split into three tunnels each 
(Fig.6c). 

Figure6. Spanningsurj'acesinvariousedgepatterns: (a) "4", (b) "3a", (c) "3b", (d) "2a". 

Twisting a second face of shape "3a" can either elongate this trench into a C-shaped canyon, i.e. 
pattern "2a" (Fig.6d), or it can connect the remaining two ears to form a configuration with two trenches 
at a 90° angle from each other, i.e. pattern "2b", reminiscent of the structure of Charles O. Perry's Mace 
sculptures [10]. Figure 6d shows a surface of genus 3. Three surfaces of different genus that can be 
embedded in this Mace configuration have already been discussed above (Fig.5). 

While the tunnels in the Costa surface (Fig.6c) naturally fall into place, the other 2- and 3-cycle edge 
patterns offer less obvious choices concerning the'topology of their spanning surfaces. The edge patterns 
most commonly occurring in the survey, "2a" and "3a", exhibit one or two isolated ears combined with a 
longer edge cycle. For these 2- and 3-cycle structures, we can readily add face- or space-diagonal tubes to 
connect all ears and trenches so as to form a connected surface. For case ''2a'' (Fig.6d) I have used four 
face-diagonal tubes surrounding a central tetrahedral chamber. For these less symmetrical edge patterns, 
we also have to choose, whether we want to form an additional saddle (of potentially higher order) at the 
center of the cube. Since these shapes have lower symmetry and appear to have less aesthetic appeal; I 
have not pursued them thoroughly, so far. 

Among the single-cycle patterns, we only find the two patterns that we are already familiar with: the 
1991e pattern and the Gabo-3 pattern. It can be seen that the 1991e pattern, and thus all the basic Volution 
shells, come in two versions, "la" and "Ib", which are mirror images of each other. 

5. Additional Tunnels 

Tunnels clearly make these structures interesting. We can also try to enhance the simple warped-disk 
forms by adding tunnels between pairs of suitable chosen flanges. As a general rule, since all of these 
surfaces are two-sided,and thus could be painted with two different colors, the entry and exit openings of 
a tunnel must lie in regions of the same color. 

For edge pattern "lc" we have already seen a spanning surface with "naturally occurring" tunnels in 
the Batwing modules (Fig.2c). Each "lobe", defined by two contiguous quarter circle arcs turning around 
the same cube comer, forms an entrance to a tunnel. These six openings are connected into two stacked 
Y -configurations of tunnel junctions that lie above and below a central monkey saddle. 
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In a similar way, we can enhance the basic 1991e configuration. The Volution_O surface has four 
"lobes" which form the ends of the two tortuous Z-shaped canyons on either side of the central saddle. 
The inner parts of two of these lobes are red and two are blue, if the original disk is painted with these 
two colors on its two sides. Adding two separate tubes; connecting the two pairs of entrances with 
matching colors, while maintaining the given D2 symmetry, leads to Volution_2 (Fig.7a), a surface of 
genus-2 that resembles an irregularly twisted 5-story Scherk tower [13]. 

There is a simple and graceful way to increase the genus by only 1 without destroying the D2 
symmetry. As in the case of the Batwing module, we can push the two tunnels close to the center of the 
cube, so that they touch and form a saddle between them. This results in a simpler structure of genus 1 
(Fig.7b). We can further increase the genus of these Volution shells by adding face-diagonal tubes 
between any two flanges ending in the same cube surface. Adding four such tubes to Volution_l along 
the side faces of the cube, results in a very intriguing surface of genus of 5 (Fig.7c). On the other hand, 
doing the same thing with Volution_2, leads to a structure that becomes too cluttered. 

Figure 7. (a) Volution_2, (b) Volution_i, (c)Volution_5. 

These exploratory models were realized quickly as plastic maquettes built on an FDM [16] rapid 
prototyping machine. Using the SLIDE environment [15], I first designed thin polyhedral2-manifolds of 
the proper topology and with the maximal symmetry possible. These models had from 30 to 60 facets, 
and were provided with 2 to 4 continuously adjustable numerical parameters that defme the position of 
some of the key vertices in these polyhedral models. By moving these vertices, the diameter of the tunnels 
and their distances from the cube center, or the extension and curvature of the flanges can be adjusted 
interactively. I then used SLIDE's subdivision module to send these manifolds through three generations 
of Catmull-Clark surface refinements. The twelve outer comers located at the edge centers of the basic 
cubic cell were flagged to keep their original positions while undergoing this approximating subdivision 
procedure - otherwise the edges would have been rounded to something like an Aurora-like rim shape 
(Fig.3c). Once I had adjusted the shape parameters to end up with a satisfactory subdivision surface, I 
used SLIDE's offset-surface module to turn the thin manifold into a surface slab of sufficient thickness, so 
that it could be built with a layered-manufacturing rapid-prototyping process. These physical maquettes 
were very important in comparing the various topologies and in selecting the shapes that seemed 
worthwhile to be optimized for aesthetic criteria and/or to be turned into true minimal surfaces. 

6. Constrained Minimal Surfaces 

For the promising, not-too-cluttered geometries, I wanted to explore, whether these manifolds can be 
turned into true minimal surfaces - and perhaps into periodic building blocks. For a few of the edge 

. configurations, i.e. for the tetrahedral 4-ear configuration and for the Gabo-3 curve, the answers can be 
seen on Brakke's webpage [2]. For the latter edge configuration, we can also omit the tunnels and then 
obtain the classical monkey saddle (Fig.8a). Other configurations require additional studies. Fortunately, 
once we have an initial polyhedral mesh that defines the topology of an interesting shape, we can readily 
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send it through the Surface Evolver [1] and try to obtain a true minimal surface. If we start with the 3-
cycle edge configuration that affords the topology of a genus-2 Costa surface, the Surface Evolver, 
reveals that this particular edge configuration embedded in the surface of a cube indeed allows the 
fonnation of a true, albeit unstable minimal surface. The result is a very attractive sculpture (Fig.8b). 

Figure 8. Classical minimal sUrfaces: (a) Monkey saddle, (b) Costa surface, (c) Scherk's sUrface. 

Volution_O, Volution_l, and Volution_S also looked attractive enough so that it was worthwhile to 
study the minimal surfaces that they might generate. Volution_O presented no problem (Fig.9a). The 
central point was fixed in the middle of the cube, in accordance of the inherent symmetry of this shape. 
This symmetry, captured in the polyhedral description, was maintained during the relaxation process in 
the Surface Evolver. However, an actual physical soap film would not remain in this unstable equilibrium. 

On the other hand, Volution_l has asymmetrical saddles between each of the central tunnels and the 
outer "half-tunnels" between the pairs of edges in the top and bottom faces of the cube. If this saddle is 
not perfectly balanced, it will move in the direction of the narrower tunnel. For the standard quarter 
circles on the top and bottom cube faces, the inner'tunnel has more contraction power and will collapse, if 
the Surface Evolver is run long enough. However, this process is slow enough; so that we can capture a 
pleasing state for a stand-alone sculpture; but we should be aware, that this is not a true minimal surface 
but only a snapshot in a run-away process. Only by changing the quarter circles on the top and bottom 
faces into hyper-quadrics, so that they can approach each other more closely, one can make sure that the 
outer half-tunnel has a strong enough contraction force, so that we can fmd an initial balance point that 
will lead to an (unstable) equilibrium configuration of the final surface shape. 

Figure 9. (a) Unstable "minimal" sUrface of genus 0, (b,c) snapshots ofa run-away minimization 
process for sUrfaces of genus 1 and 5, respectively. 

As we add more tunnels, more instabilities arise. In Volution_S we have two types of "inner" tunnels 
that need to be balanced against their adjacent outer half-tunnels - as well as against each other! Again, 
we can readily capture a pleasant state of the evolving surface before any tunnel collapses (Fig.9c). 
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Adjacent tunnels forming saddles between them is not something one typically sees in nature, but 
mathematical illustrations of minimal surfaces are full of such configurations. Even the basic Scherk 
minimal surface (Fig.8c) is unstable and would end up in run-away disaster, if one of the holes got 
slightly larger or smaller. In more complex structures, the point of balance between any pair of such 
tunnels has to be found by a binary search for the proper initial position of the shared wall between them. 
For structures with n different kinds of tunnels, there may be as many as n(n-l)/2 shared walls that need 
to be adjusted, and the balancing process can become quite tedious. 

7. Modular BuDding Blocks 

Since we have confined the edges of all these surfaces to the same standard quarter-circles on all the 
cube faces, these elements can readily be stacked together in all three directions and have their flanges 
join without gaps (Fig. 10). However, there is no guarantee that these flanges will join with tangent 
continuity. If we look more closely at some at some of the stacking examples, we can indeed see such 
discontinuities. To avoid such discontinuities one can send two abutting modules jointly through the 
surface minimization process (Fig. I 1 ). 

Figure 10. Stacked modular Volution elements. 

Figure 11. Minimal surfaces of two joined Volution_O elements: (a) mirrored, (b) C2-rotation. 
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To guarantee tangent continuity at these seams, one could demand that the surfaces terminate 
perpendicularly on the cube surfaces. This condition can be achieved by specifying the cube surfaces to 
act like "mirrors" in the Surface Evolver. This has the same effect as evolving a pair of joined modules 
together with a loose boundary between them (Fig.H). However, this means that we can no longer 
specify the shape of the boundary curve, and the resulting curves will be different when we combine 
different modules in different ways. In general, the edges will then no longer be quarter-circles! In 
particular, when two cells are joined with C2 symmetry, the shared edge becomes a straight line (Fig. llb). 
Thus the resulting Volution elements can then only be stacked using equivalent cube faces, but not by 
joining arbitrary sides. 

To obtain a totally modular element that can be stacked on all six cube faces with arbitrary 
combinations of the orientations of adjoining modules, several conditions have to be fulfilled: 
1. To guarantee GO (surface-) continuity, the boundaries must be of a ftxed, predeftned shape, Le., they 

must all be exact quarter circles. 
2. To guarantee Gl (tangent-) continuity along all possible seams, the surface must meet the cube faces 

perpendicularly along all its boundaries. 
3. To guarantee G2 (curvature-) continuity, the curvature perpendicular to all the boundaries must be a 

predeftned constant, i.e., zero. . 

Condition 1.) can be fulftlled by a minimal surface - and that is what we have done with our Volution 
elements discussed above. If we also want to fulflll condition 2.), we need an energy functional of higher 
order. Brakke's Surface Evolver also provides code for the Willmore energy functional [8], which 
minimizes bending energy, i.e. the area integral over the square of curvature. This functional allows us to 
specify position as well as surface normal along the boundary curves. With those constraints we could 
create modular blocks that exhibit G1 continuity across their seams when put together. 

In order to accommodate all three requirements simultaneously, we need an optimization function of 
even higher order. A possible candidate is the MVS functional, which minimizes the area integral of the 
derivative of curvature [8]. This functional seems to optimize surface aesthetics in many different 
situations [12]. However, we are not aware of a robust and efficient implementation of this functional. 
The multiple nested optimization loops of the original demonstration code, used to maintain C1 and C2 

continuity between all the bi-quintic Bezier patches, are far too slow. A different internal representation 
that automatically maintains continuity through its underlying construction, e.g., through the use of a 
subdivision surface, could remedy this problem. 

Figure 12 shows stacking examples using Volution_l minimal surface elements. 

Figure 12. Two Voll#ion-l elements: (a) stacked, (b,c)jointly evolved to minimal sUrface. 
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8. Minirnality and Aesthetics 

The volution surfaces emerging from the Surface Evolver look beautifully balanced, and there is no 
obvious way in which these shapes could be aesthetically improved. Does this mean that minimal surfaces 
represent an aesthetic optimum in general? A few experiments give some insight into this question. 

In one experiment, John Sullivan has approximated the edge curve of Atomic Flower 2 [4] sculpted 
by Brent Collins with smooth mathematical curves that result in the same symmetry, and then used 
Brakke's Surface Evolver to minimize a suitable spanning surface [17]. I thickened this minimal surface 
by computing an offset surface in SLIDE [15], and then fabricated a maquette on our FDM machine 
(Fig.13a). When comparing this model to the original sculpture, it becomes clear that Collins' original 
artwork has superior aesthetics. A key difference is visible in the narrow looping ribbons. The original 
ribbons have a strong lateral curvature to make them into distinct channels that emote physical strength 
and stability, and which turn them into interesting 3-dimensional elements. The true minimal surface, on 
the other hand, needs to balance the lateral curvature with the curvature in the longitudinal direction. This 
makes these ribbons almost flat, and clearly less visually interesting. 

A second experiment involved the Minimal Saddle Trefoil which resulted from the early phases of 
my collaboration with Brent Collins. In this case, the best-fitting (4,3) torus knot was used as the 
constraining edge curve for a minimal surface, and again a maquette was made (Fig. 13b)· for direct 
comparison with my original design coming out of my Sculpture Generator I [13]. In this case, I prefer 
the shape produced by the Surface Evolver. The differences are subtle and mostly related to the exact 
shape of the edge curve. Specifying a perfect torus knot curve avoids some of the unnecessary 
undulations produced by my ad hoc representation in the Sculpture Generator I, which is based on a 
sequence of stacked hyperbolas. 

As a third experiment we have taken the edge constraints of the spherical octahedron and embedded an 
approximation of Stewarts surface in it. The Surface Evolver then turned this into the minimal surface 
shown in Figure 13c - a very pleasing, well-balanced shape. 

What can we conclude from these experiments? It seems that for large surfaces, deviations from 
minimality do not produce any aesthetic gains. However, if the sculpture involves narrow, ribbon-like 
parts, artistic freedom can produce aesthetic.gains over the perfect minimal surface geometry. In the case 
of the Volution shells, the surfaces are wide enough, so that we can readily use the true minimal surface 
as the aesthetic optimum. 

Figure 13. Reconstructions as true minimal surfaces: (a) CollinS' Atomic Flower 2, 
(b) Sequin's Minimal Saddle Trefoil, (c) Stewart's spanning sUrface in a spherical octahedron. 
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9. Conlusions 

The detailed investigation of a warped saddle surface embedded in a predefined edge structure has 
lead to the discovery of fascinating connections between constrained minimal surfaces, modular 
architectural building blocks, and triply periodic minimal surfaces. It has also resulted in the discovery of 
several aesthetically very attractive shapes, which can either stand on their own as large scale sculptures 
or which can be combined in amodular manner. 

Acknowledgements 

The help of Cathy Tao and Trai Le in running some of these models through Brakke's Surface Evolver 
are greatly appreciated. Many thanks also go to John Sullivan for his thorough review of the paper and for 
helping me understand how to determine the genus of surfaces with multiple boundary components. 

References 

[1] K. Brakke, Surface Evolver, - http://www.susgu.edulfacstafflblbrakkelevolver/ (2003). 

[2] K. Brakke, Triply Periodic Minimal Suifaces, -
http://www.susgu.edulfacstafflblbrakelevolver/examples/periodic/ (2003). 

[3] B. Collins, Finding an Integral Equation of Design and Mathematics, Proc. Bridges '98, Fig.22, p27. 

[4] B. Collins, Merging Paradigms, Proc. Bridges'99, Fig: Atomic Flower 2, Appendix. (1999). 

[5] D. A. Hoffman: Costa Suifaces, -
http://www.msri.orglpublicationslsgp/jimlgeomlminimalllibrary/costalindexd.html (2003). 

[6] P. Hooper, Iggle, - private communication, NC State University, Raleigh, Fall 1999. 

[7] J. Hrdlicka, Suiface by P. J. Stewart, - private communication, March 2001. . 

[8] L. Hsu, R. Kusner, and J. Sullivan, Minimizing the Squared Mean Curvature Integral for Suifaces in 
Space Forms, Experimental Mathematics 1, p191-208 (1991). 

[9] H. P. Moreton and C.H. Sequin, Functional Optimization for Fair Suiface Design, Proc. ACM 
SIGGRAPH'92, Chicago, July 1992, and Computer Graphics, Vol 26, No 2, pp 167-176, (1992). 

[10] C. Perry, Charles O. Perry, deCesare Design Assoc., Darien CN, "Early Mace" p52, (1987). 

[11] Plateau's Problem, - http://mathworld.wolfram.comIPlateausProblem.html (2003). 

[12] C. H. Sequin, P. Y. Chang, and H. P. Moreton, Scale-Invariant Functionals for Smooth Curves and 
Suifaces, Proc. 1993 Dagstuhl Seminar on Geometric Modelling, Hans Hagen, ed., Computing 
Supplement 10, Springer, pp 303-321, July 1995. 

[13] C. H. Sequin, Virtual Prototyping of Scherk-Collins Saddle Rings, Leonardo, Vol. 30, No.2, 1997, 
pp.89-96. 

[14] C. H. Sequin, "Viae Globi" - Pathways on a Sphere, Mathematics and Design 2001, Geelong, 
Australia, July 3-5, 2001. . 

[15] J. Smith, SUDE environment, - http://www.cs.berkeley.edul-uglslideldocs/slidelspec/ (2003). 

[16] Stratasys Corp., FDM machine, - http://www.stratasys.coml(2003). 

[17] J. Sullivan, Minimal Flower 3, - http://torus.math.uiuc.eduljms/Images/Sculp/ (2003). 

[18] ZCorporation, 3D-Printer, - http://www.zcorp.coml(2003). 

24 


