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Abstract 

BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

Mirror curves are present in ethnical art, as Tamil threshold designs or Tchokwe sand drawings. Historically, 
they are to be found in the art of most peoples surrounding the Mediterranean, the Black and Caspian Seas, in 
the art of Egyptians, Greeks, Romans, Byzantines, Moors, Persians, Turks, Arabs, Syrians, Hebrews and 
African tribes. Highlights are Celtic interlacing knotworks, Islamic layered patterns and Moorish floor and wall 
decorations. In this paper mirror curves are considered from the point of view of geometry, tiling theory, graph 
theory and knot theory. After the enumeration of mirror curves in a rectangular square grid, and a discussion of 
mirror curves in polyominoes and uniform tessellations, the construction of mirror curves is generalized to any 
surface. 

1. Introduction and preliminaries 

Let a connected edge-to-edge tiling of some part of a plane by polygons be given. Connecting the 
midpoints of adjacent edges we obtain a 4-regular graph: the graph where in every vertex they are four 
edges, called steps. A path in that graph is a connected series of steps, where each step appears only once. 
Every closed path in that graph is called a component. The set of all components of such graph is called a 
mirror curve. In every vertex we have three possibilities to continue our path: to choose left, middle, right 
edge. If the middle edge is chosen such vertex will be called a crossing. By introducing in every crossing 
the relation over-under, every mirror curve can be converted into a knotwork design. 

The term "mirror curve" could be simply justified if we take a rectangular square grid RG[a,b] with the 
sides' a and b, where that sides are mirrors, and the additional internal two-sided mirrors are placed 
between the square cells, coinciding with an edge, or perpendicular to it in its midpoint. In this case, a ray 
of light, emitted from one edge-midpoint, making with that edge a 45° angle, after the series of reflections 
will close a component. BeginIiing from different edge-midpoints, till exhausting the complete step graph, 
we obtain a mirror curve. It is easy to conclude that the preceding description could be extended to any 
connected part of a regular triangular, square or hexagonal tessellation, this means to any polyamond, 
polyomino or polyhexe, respectively. 

After the historical remarks about Tamil and Tchokwe mirror curves and knotwork designs created by 
Leonardo and DUrer (SectiQns 2,3.4), the rules for the construction of one-component mirror curves are 
given in Section 5. Such algorithm rules are used for the combinatorial enumeration of mirror curves 
obtained from RG[a,b] with a minimal number of internal mirrors (Section 6). In the Sections 7,8,9 are 
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considered black-white designs derived from mirror curves (so called Lunda designs), the use of mirror 
curves for a polyomino shape 0-1 notation, and Lunda polyominoes. In the Section 12 mirror curves are 
considered from the point of view of knot theory. In the last section, mirror curves are generalized to any 
surface. 

2. Tamil Treshold Designs 

"During the harvest month of Margali (mid-December to mid-January), the Tamil women in SOllth India 
used to draw designs in front of the thresholds of their houses every morning. Margali is the month in 
which all kinds of epidemics were supposed to occur. Their designs serve the purpose of appeasing the 
god Siva who presides over Margali. In order to prepare their drawings, the women sweep a small patch 
of about a yard square and sprinkle it with water or smear it with cow-dung. On the clean, damp surface 
they set out a rectangular reference frame of equidistant dots. Then the curve(s) forming the design is 
(are) made by holding rice-flour between the fingers and, by a slight movement of them, letting it fallout 
in a closed, smooth line, as the hand is moved in the desired directions. The curves are drawn in such a 
way that they surround the dots without touching them." 

P. Gerdes: Reconstruction and extension of lost symmetries: examples from the Tamil of South India [3]. 

The (culturally) ideal design is composed of a single continuous line. Names given to designs formed of a 
single "never-ending" line are normally pavitram, meaning "ring" and Brahma-mudi or "Brahma's knot". 
The object of the pavitram is to scare away giants, evil spirits, or devils. 

Is it not strange that the design composed of two or several superimposed closed paths, are nevertheless 
called pavitram? Maybe the designs formed of a few never-ending lines are just degraded versions of 
originally single closed path figure? 

Is it possible to construct a design rather similar to them, but made out of only one line? Slightly changing 
them, we may transform some imperfect, multi-linear designs into the ideal ones . 

• 
. . . . .... . . . . 

••••••••• ••••••••• .. . . . . . . . . . .. . . . . . . . . . 

Figure l:Tamil threshold designs. 
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3. Tchokwe Sand Drawings 

"The Tchokwe people of northeast Angola are well known for their beautiful decorative art. When they 
meet, they illustrate their conversations by drawings on the ground. Most of these drawings belong to a 
long tradition. They refer to proverbs, fables, games, riddles, etc. and play an important role in the 
transmission of knowledge from one generation to the other." 

" ... Just like the Tamils of South India, the Tchokwe people invented a similar mnemonic device to 
facilitate the memorization of their standardized drawings. After cleaning and smoothing the ground, they 
first set out with their fingertips an orthogonal net of equidistant points. The number of rows and columns 
depends on the motif to be represented. By applying their method, the Tchokwe drawing experts reduce 
the memorization of a whole design to that of mostly two numbers and a geometric algorithm. Most of 
they drawings display bilateral and/or rotational (900 or 180<] symmetries. The symmetry of their 
pictograms facilitates the execution of a drawing. This is important, as the drawings have to be executed 
smoothly and continuously. Any hesitation or stopping on the part of the drawer is interpreted by the 
audience as an imperfection and lack of knowledge, and assented with an ironic smile." 

P. Gerdes: On ethnomathematical research and symmetry [1]. 

~* 
T··;·:~~:·· ~ , . . (!@) 
~ 

Figure 2: Tchokwe sand drawings. 

4. Leonardo and Durer 

"Leonardo spent much time in making a regular design of a series of knots so that the cord may be traced 
from one end to the other, the whole filling a round space ... " 

G. Bain: Celtic Art - the Methods of Construction [2]. 

The construction of knot designs, closely connected with mirror curves, occupied the attention of two of 
the greatest painters-mathematicians: Leonardo and DUrer [2]. In some of their constructions, they very 
efficiently used the following geometrical property: for a rectangular square grid RG[a,b] with the sides a 
and b, if a, b are relatively prime the result is always a single closed curve covering uniformly the square 
tiling of a rectangle. 
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Figure 3: Circular knot designs by Leonardo and Durer. 

Let us notice one more beautiful geometrical property: mirror curves can be obtained by using only few 
different prototiles. For the construction of all the curves, with internal mirrors incident to the cell-edges, 
three prototiles are sufficient in the case of a regular triangular tiling, five in the case of square, and 11 in 
the case of hexagonal regular tiling [4]. 

Figure 4: Five knot prototiles for square grid. 

Using their combinations occurring in the 11 uniform Archimedean tilings [5], or the prototiles producing 
the impression of space structures and colored prototiles, we may obtain very artistic interlacing patterns 
belonging to the so called modular design: the use of few initial elements ("modules" - prototiles) for 
creating an infinite collection of designs [6]. The mirror curves obtained from Archimedean tilings 
remind us of the optical phenomenon: change of the direction of a light ray transferring from one physical 
environment to the other. 



Mirror Curves 237 

5. Mirror Curves 

The imitation of the three-dimensional arts of plaiting, weaving and basketry was the origin of interlaced 
and knotwork interlaced designs. There are Jew races that have not used it as a decoration of stone, wood 
and metal. Interlacing rosettes, friezes and ornaments are to be found in the art of most peoples 
surrounding the Mediterranean, the Black and Caspian Seas, Egyptians, Greeks, Romans, Byzantines, 
Moors, Persians, Turks, Arabs, Syrians, Hebrews and Mrican tribes. Their highlights are Celtic 
interlacing knotworks, Islamic layered patterns and Moorish floor and wall decorations [2]. 

Their common geometrical construction principle, discovered by P. Gerdes, is the use of (two-sided) 
mirrors incident to the edges of a square, triangular or hexagonal regular plane tiling, or perpendicular to 
its edges in their midpoints [1,7,8,9]. In the ideal case, after the series of consecutive reflections, the ray 
of light reaches its beginning point, defming a single closed curve. In other cases, the result consists of 
several such curves. For example, to the Celtic designs from G. Bain's book "Celtic Art" [2], correspond 
the following mirror-schemes: 

Figure 5: Celtic knots with mirror-schemes. 

Trying to discover their common mathematical background, they appear two questions: how to construct 
su~h a perfect curve - a single line placed uniformly in a regular tiling, this means, bow to arrange the set 
of mirrors generating it, and how to classify· the curves obtained. In principle, any polyomino 
(polyiamond or polyhexe [10]) with mirrors on its border, and two-sided mirrors between cells or 
perpendicular to the internal cell-edges in their midpoints, could be· used for the creation of the 
corresponding curves. 

For their construction in some polyomino (polyiamond or polybexe), we propose the following method. 
First, we construct all the different curves in it without using internal mirrors, starting from different cell­
edge midpoints and ending in them, till the polyomino is exhausted, i.e., uniformly covered by k curves. 
After that, we may use "curve surgery" in order to obtain a single curve, according to the following rules: 

1. any mirror introduced in a crossing point of two distinct curves connects them into one curve; 

2. depending on the position of a mirror, a mirror introduced into a self-crossing point of an 
(oriented) curve either does not change the number of curves, or breaks the curve into two closed 
curves. 
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xxx XXX 
Figure 6: Rules for introduction of a mirror. 

In every polyomino we may introduce k-l, k, k+1, ... , 2A-P/2 internal two-sided mirrors, where A is the 
area and P is the perimeter of the polyomino. Introducing the minimal number of .mirrors k-l, we fIrst 
obtain a single curve, and in the next steps we try to preserve that result. 

In the case of a rectangular square grid RG[a,b] with the sides a, b, the initial number of curves, obtained 
without using internal mirrors is k = gcd(a,b) (gcd- greatest common divisor), so in order to obtain a 
single curve, the possible number of internal two-sided mirrors is k-l, k, ... , 2ab-a-b. According to the 
rules for introduction of internal mirrors, we propose the following algorithm for the production of mono­
linear designs: in every step, each of the fIrst internal k-l mirrors must be introduced in crossing points 
belonging to different curves. After that, when the CUrves are connected and transformed into a single 
line, we may introduce other mirrors, taking care about the number of curves, according to the rules 
mentioned. For example: 

Figure 7: Derivation of mono-linear designs in RG[2,2J. 

The symmetry of such curves is used for the classifIcation of the Celtic frieze designs by P. Cromwell 
[11], and for the reconstruction of Tamil designs by P. Gerdes [3, 12]. From the ornamental heritage, at 
fIrst glance appears that symmetry is the mathematical basis for their construction and possible 
classification [1,3,11]. But, the existence of such asymmetrical curves suggests another approach. 

First criterion that we may use is the geometrical one: two curves are equal iff there is a similarity 
transforming one into the other. This means, that one curve can be obtained from the other by a combined 
action of a proportionality and isometry. Instead of considering the curves, we may consider the equal 
mirror arrangements defined in the same way. Having the algorithm for the construction of such perfect 
curves and the criterion for their equality, we may try to enumerate them: to find the number of all the 
different curves (i.e., mirror arrangements) which can be derived from a rectangle with the sides a, b, for 
a given number of mirrors m (m = k-l, k, ... , 2ab-a-b). 

The other point of view to the classifIcation of such perfect curves is that of knot theory [13]. Every such 
curve can be simply transformed into an interlacing knotwork design, this means, into the projection of 
some alternating knot. We return to this connection in Section 11. 
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6. Enumeration 

The problem is: fmd the number of all different mono-linear curves (i.e. the corresponding mirror 
arrangements) which could be derived from a rectangular grid RG[a,b] with the sides a, b, covered by k 
curves, for a given number of mirrors m (m = k-I, k, .•. , 2ab-a-b). Unfortunately, we are very far from the 
general solution of this problem. Reason for this is: every introduction of an internal mirror changes the 
whole structure, so it behaves like some kind of "Game of Life" or cellular automata, where a local 
change results in the global change. 

Till now we have only few combinatorial results [14], obtained for some particular cases by the author, 
and generalized by G. Baron. Let a rectangular grid RG[a,b], k = gcd(a,b), be given, and let the minimal 
number k-I of two-sided internal mirrors be introduced incident to the cell-edges. If t = (ab­
lcm(a,b»:(k(k-I» = 4xy (lcm - lowest common measure), x = a:(2k), y = b:(2k), we have the following 
results, where for different k are given the conditions for a, b, and the number of curves: 

a) with k-l only edge-incident mirrors, and a non equal to b, 

at) for k odd: (4k),,-21'-t + 2( 4kik-3)12lk-t)l2; 

a2) for k even: (4k}k-21'-t + (4kik-2)12Z,<k-2)12, 

with z = x for a = 0 mod 2k, b = k mod 2k, and z = x+y, for a = b = k mod 2k; 

b) with k-I edge-incident or edge-perpendicular mirrors, and a non equal to b, 

bt) f~r k odd: 2(8k)k-21'-t + 4(8k)(k-3)12lk-t)l2, 

~) for k even: 2(8k}k-21'-t + 2(8k)(k-2)12 zik-2)12, 

withz =xfora =0 mod 2k, b= kmod 2k, andz =x+y fora = b =kmod 2k. 

For a = b we have to put t = 1, Z = 1, divide the numbers by 2, and get 

a) for k-I only edge-incident mirrors 

at) for k odd: 22k-S ~-2 + 2k_3k(k-3)J2, 

a2) for k even: 8~-s ~-2 + 2k_3k(k-2)I2, 

b) with k-I edge-incident or edge-perpendicular mirrors, 

bt) for k odd: (8k),,-2 + 2(8kik-3)J2, 

b2) for k even: (8k}k-2 + (8k)(k-2)12. 

Even for some smaller rectangles (e.g., a = 6, b = 3), and minimal number of mirrors (k-I = 2), the 
number of the different curves obtained is very large. G. Baron also derived formulas for the case a = b 
with the larger groups of symmetries and, finally, constructed for k = a = b equal 2 or 3 and the maximum 
number of mirrors all different mirror-schemes. There is only one for k =2 and 28 for k=3. 

For example, there are 52 different arrangements of two edge-incident mirrors in a rectangle 6x3 
producing perfect curves. Among them, only 8 are symmetrical- 4 mirror-symmetrical and 4 point­
symmetrical. 
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Figure 8: 52 arrangements o/two edge-incident mirrors in a rectangle 6><3. 

7. Lunda Designs 

If we enumerate the small squares through which the singular mirror curve passes by 1,2,3, ... until the 
closed curve is complete, and then reduce all the numbers modulo 2 (replacing every number by its 
remainder, when dividing it by 2), the result will be a 0-1 (or "black"-"whitetl ) mosaic: a Lunda design [7, 
8,9]. Lunda designs possess the local equilibrium property: the sum of the integers in every two border 
unit squares with the joint reference point is the same, and the sum of the integers in the four unit squares 
between two arbitrary neighboring grid points is always twice the preceding sum. From this, results the 
global equilibrium property: the sum in each row is equal, and the same holds for the columns. This local, 
and global eqUilibrium property resulting from it holds as well if we.enumerate the curve and reduce all 
the numbers modulo 4. 

In particular, enumerating a regular curve (with the mirrors incident to the grid edges) and reducing all the 
numbers modulo 4, we obtain four-colored Lunda designs, where every reference point is orderly 
surrounded by numbers 0,1,2,3 and the disposition of the sequences arou~d the points is alternately 
clockwise and anti-clockwise. 

The correspondence between mono-linear mirror-curves (i.e., the corresponding arrangements of mirrors) 
and Lunda designs is many-to-one, so the same Lunda design could originate from several classes, 
consisting of different mirror arrangements. Open question: try to define such classes of mirror 
arrangements. 

Figure 9: Mirror arrangements and their corresponding Lunda designs. 
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8. Polyominoes 

A plane topological disk· (Le., a plane region without "holes"), consisting of n edge-to-edge adjacent 
squares is called a polyomino [10]. Instead of squares we could use n equilateral triangles or n regular 
hexagons, and to obtain, respectively, polyiamonds or polyhexes. We will restrict our discussion 
to polyominoes (with polyiamonds and polyhexes the situation is absolutely the same). For every 
polyomino we could distinguish its shape and orientation ("left" and "right" form). For 
polyominoes not having a reflective symmetry, we may distinguish (or not) their "left" and "right" form. 
According to thi~ we have two possible equality criteria: a) regarding only the shape (without 
distinguishing "left" or "right" form); b) regarding both, the shape and orientation. Till now, there is no 
formula for ·calculating the number of different polyominoes, but only some results (for smaller values of 
n), obtained by empirical (computer) derivation. 

In every border square cell of a polyomino we could introduce two-sided mirrors perpendicular to the 
internal edges in their midpoints. Mter a series of reflections, the ray of light will "describe" the shape: a 
closed Dragon curve. If we denote a reflection in a border mirror by 0, and a reflection "in an internal 
mirror by 1, we have 0-1 words (or symbols) for polyominoes, where these words are cyclically 
equivalent (this means, could be read starting from any sign 0 or 1 and ending in it). For n=1 we will have 
only one polyomino 0000, for n=2 the polyomino 00010001, for n=3 two polyominoes: 000101000101 
and 000100100011, for n=4 five of them: 0001010100010101, 0001010001100011, 001001001001, 
0001001100010011, and 0001001010001011, etc. 

From their binary symbols we could directly make conclusions about the symmetry: every reversible 
word denotes polyominoes with a sense-reversing symmetry (they don't have "left" and "right" form); 
irreversible symbols correspond to the polyominos appearing in the "left" and "right" form (e.g., 
0001001100010011 or 0001001010001011). 

That symbols (or binary numbers) we could translate into hexadecimal numbers and to every polyomino 
assign exactly one such number. For example, this could be the minimum of all such cyc1ic-equivalent 
symbols (e.g. to the polyomino 00010001 correspond cyclically equivalent symbols 00100010, 01000100, 
10001000 and the minimum of them is 00010001 = 11 in the hexadecimal system. Hence, we have the 
notation for polyominoes where to every polyomino corresponds exactly one such number, and vice 
versa. (Open question: find the general algebraic form of the number determining a polyomino? Namely, 
some numbers will determine "opened polyominoes", "hollow polyominoes" or "overlapping 
polyominoes", that are not included in our definition, and other will determine "real" polyominoes). 

Every (n+l)-omino we derive from some n-omino by adding to it a single square. Certainly, the addition 
operation is a positional one, that is, the result depends from the position where we add the new square. 
Here we have the following addition rules: i) aO+Oooo=alOOOI (l-edge contact); ii) aOllO+OOOO=alOOI 
(2-edge contact); iii) aOll0ll0+OOOO=al0l0 (3-edge contact), where a never ends with 1. 

This "algebra" could be successfully used for the computer enumeration of polyominoes. In each step we 
need to derive (n+ 1)-minoes from n-minoes by adding a square, to test the equality of polyominoes 
obtained and to make a complete list of the different (n+l)-minoes obtained. The main problem in such a 
derivation will make ''undesired'' edge contacts (e.g., in parallel edges, producing "hollow" polyominoes). 

9. Lunda Polyominoes and Lunda Animals 

Polyominoes (either black or white) appearing in Lunda designs will be called Lunda 
polyominoes [7]. The possible shape of Lunda polyominoes is conditioned by the local equilibrium 
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condition for Lunda designs. Therefore, some polyominoes are inadmissible (e.g., 001001001001). On 
the other hand, in Lunda polyominoes are included also "hollow" polyominoes. By introducing the 
concept of Lunda-animals, P. Gerdes in his book "Lunda geometry: Designs, Polyominoes, Patterns, 
Symmetries" [7] obtained the first approximation for the total number of different Lunda n-ominoes. 

Lunda-animal is a Lunda m-omino with a unit square at one of its ends, representing a head. A Lunda­
animal walks in such a way that after each step the head occupies a new unit square, and each other cell 
occupies the preceding one. In other words, two subsequent positions of a Lunda-animal have a Lunda­
tetromino in common. How many different positions ps(n) of a Lunda 5-omino are possible after n steps? 
P. Gerdes proved that: Pm(n) = .f{n+3) for m = 1,2,3, ... ,8, where .f{n) is the famous Fibonacci sequence 
0,1,1,2,3,5,8,13,21,34 ... given by the recurrence formula:.f{n+1) =.f{n) + .f{n-1). It is interesting that for 
every Lunda m-omino for m<9 the result is the same, so Pm(n) = .f{n+3) for 1~S;;8. From m = 9 onwards, 
Pm(n)<.f{n+3). Open problem: try to find the general formula for Pm(n). 

10. Graphs and Knots 

Every Eulerian graph [14] is a projection of some knot or link and vice versa. Such a projection is called 
regular if the graph is 4-regular, i.e., if the valence of every vertex is 4. Otherwise, the projection is 
irregular. By slightly changing it, it is always possible to tum some irregular projection of a knot or link 
into a regular one. Two knot or link projections are isomorphic (or simply, equal or same) if they are 
isomorphic as graphs on a sphere. Trying to fmd all non isomorphic projections of alternating knots and 
links with n crossings, we need to fmd all non isomorphic 4-regular planar graphs with n vertices and vice 
versa. Among them, we could distinguish graphs with or without digons. If we denote digons by colored 
edges, we could imagine the trefoil knot as a triangle with all colored edges, the knot 41 as a tetrahedron 
with two colored nonadjacent edges, Borromean rings as an octahedron [15], etc. After that, you could 
replace every digon by a chain of digons, and obtain different families of knots and links. Such 
"geometrical" approach to knots and links is presented in my papers "Geometry of links" [16] and 
"Ordering Knots" [17]. For example, the family of knots and links generated by the knot 41 is illustrated 
at Fig. to. 

Figure 10: The family of knots and links generated by the knot 41• 
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11. Knots and Mirror Curves 

The other point of view to the classification of mirror curves is that of knot theory [13, 16, 17]. As 
mentioned before, every such curve can be simply transformed into an interlacing knotwork design, this 
means, into a projection of some alternating knot. In the history of ornamental art, such curves occur most 
frequently as knotworks, then as plane curves. Even the name Brahma-mudi (Brahrna's knot) denoting 
such Tamil curves refers us to the knots. In order to classify them, we will first transform every such knot 
projection into a reduced (proper) knot projection - knot projection without loops, by deleting cells with 
loops. 

This way, we obtain reduced knot projections with the minimal number of crossings. Two such 
projections or knot diagrams are equal if they are isotopic in the projection plane as graphs, where the 
isotopy is required to respect over-crossing respectively under-crossing. In order to classify our curves, 
treated as knot projections, we will defme an invariant of knot (or link) projections' [4]. Let a reduced 
oriented knot diagram D with generators gh ... , gn be given. If the generators gl, gj' gk are related as in the 
left figure, then ajj = t, aij = 1, aik = -1; ifthey are related as in the right figure, then ajj = -t, alj = 1, alk = -1; 
in all the other cases aij = O. ~e determinant d(t) = laijl is the polynomial invariant of D. 

The writhe of D, denoted by w(D), is the sum of signs of all the crossing points in D, where the sign is + 1 
if the crossing point is "left", and -1 if it is "right". It is the visible property of every knot projection: 
Iw(D)1 is the type of the knot projection. 

Figure 11: "Left" and "right" crossing. 

There are some important properties of the integer polynomial invariant d(t)=cnf+ ... +Clt: 

• for every alternating knot projection, the degree of d(t) is nand Icnl=l; 

• for every knot projection Icil is equal to the type of the knot projection (Le., 1c11=lw(D)I); 

• d(t) and d(-t) correspond to the obverse (enantiomorphic, mirror symmetrical) knot diagrams; 

• for n=O mod 2, the change of the orientation of alternating knot projection results in the change 
of d(t) to d(-t); 
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• for n= 1 mod 2 a change of orientation of an alternating knot projection results in the change of 
d(t) to -d( -t). 

According to the last three properties, in the set of all polynomials d(t) we may distinguish even functions 
(d(t) = d( -t» , containing only even degrees of t, corresponding to amphichiral knot projections, and odd 
functions (d(t) = -d( -t», containing only odd degrees of t, which are invariant to a change of orientation of 
the knot projection. For example, to the knot 31 corresponds odd projection polynomial f +3t, and to the 
amphicbeiral knot 41 the even polynomial t4_2t2. 

Let us also notice that this polynomial projection invariant makes a distinction not only between non­
isomorphic knot projections of .frime knots (e.g., two projections of the knot 75, to which correspond, 
respectively, the polynomials t +3f-4f-7t and P+2f+l-4r-7t, but also between non isomorphic knot 
projections of composite knots (e'j" three non isom0T.hic projections of 41#3t. with their projection 
polynomials t'+ts-2r+5r-3t, P+l-3t -2i2+3t, t'+f+2l-2t +t2-3t, respectively). 

Rectangular square grid RG[2,2] is the minimal RG from which we could derive some nontrivial 
alternating knot (different from unknot) - the knot 31. From RG[3,2] we could obtain the knots 74, 62, 

31+#31+, 51t 52, 41 and 31t where different mirror-arrangements could give the same projection. 

It is possible to derive every knot projection from some RG? Which knot projections could be obtained 
from a particular RG? Which mirror-arrangements in some RG result in the same knot projection? Find 
the minimal RG for a given knot! Could you obtain several non-isomorphic projections of some knot 
from the same RG? These and many other problems connected with mirror curves represent an open field 
for research. 

12. Mirror Curves on Different Surfaces 

The construction of mirror curVes described before is not dependent on the metrical properties or on the 
geometry of the surface, so the same principle of construction can be applied to any tiling (e.g., on a 
sphere [7, 9] or in the hyperbolic plane [l8]). Let any edge-to-edge tiling of a part of any surface be 
given. After connecting midpoints of adjacent edges, we obtain a 4-regular graph. Using the rules for the 
introduction of mirrors, it can be converted in a single mirror curve. Open question: for any tiling, fmd a 
general formula for the number k of curves, before mirrors are introduced. 

Figure 12: Construction of a mirror curve for a given tiling. 

In the same way, from those mirror curves we may obtain the corresponding Lunda designs, etc. All non­
isomorphic Lunda designs on a regular octahedron are given at Fig. 13. Open question: enumerate non­
isomorphic Lunda designs obtained from regular polyhedrons. 
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Figure 13: Lunda designs on a regular octahedron. 
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