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Abstract 

A longstanding method for understanding concepts in mathematics involves the creation of two or three-dimensional 
images which describe a particular mathematical idea. From our earliest learning experiences, we are taught mathematics by 
appealing to our strong visual and tactile intuition. For students studying mathematics at the college or university level, the use of " 
polyhedral models and graph theoretic constructions may be a valuable tool for gaining insight into abstract areas such as group 
theory and topology. 

This investigation focuses on the use of Platonic and Archimedian solids to describe ideas in abstract algebra and to 
understand the concepts such as duality and symmetry subgroup. The reasoning behind several proofs of Euler s Formula are 
explored with the use of models. For the most part, planar graphs of polyhedra are used in place of actual three-dimensional 
models. This has the advantage of allowing for all of the vertices, edges, and faces to be viewed at the same time. 

Planar Graphs 

The notion of graph in graph theory is simply a diagram consisting of points, called vertices, 
joined together by lines, called edges. Each edge joins exactly two vertices or in the case of a loop, joins 
one vertex to itself. A graph is called planar if it can be drawn in the plane in such a way so that no two 
edges meet each other except at a vertex to which they both connect. The regions bounded edges are 
called faces. 

Each of the Platonic Solids may be expressed as drawn as planar graphs. The faces of the" 
polyhedron correspond to the faces of the graph including the unbounded region, called the face at 
infinity. In fact, any convex polyhedron may be drawn as a planar graph. To visualize this, imagine a 
convex polyhedron with glass faces. Placing your eye close to one of the faces and peering inside will 
give you a clear vision of all of the vertices and edges of the polyhedron. This image you see could be 

" projected onto a planar graph. 

'\ / 

/ '" Tetrahedron Cube Octahedron Dodecahedron Icosahedron 

Figure 1 
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Duality 

The concept of duality of polyhedra may be understood through a sequence of graphs. If P is a 
connected planar graph and p* then the dual graph of P, call it P*, can be constructed from P in the 
following manner. First, choose one point inside each face, including the face at infmity, of the planar 
drawing of P. These points are the vertices of P*. Next, for each edge of P, draw a line connecting the 
vertices of P* which lie on each side of the edge. These new lines are the edges of P*. That a tetrahedron 
is dual to itself is seen in the graphs below. 

P Vertices of P* Edges ofP* RemoveP ReshapeP* 

Figure 2 

The process works for any convex polyhedron as is shown in the case of the truncated cube. 

Truncated Cube 
P 

o 

Vertices of p* EdgesofP* RemoveP ReshapeP* 

Figure 3 

Symmetry Groups 

Definition A symmetry of a polyhedral model is a rotation or reflection, which transforms 
the model so that it appears unchanged. The rotational symmetries along with the identity 
transformation form the s ou of rotations of a 01 hedral model. 

A number of classical groups may be represented as symmetry groups of rotations of polyhedra. 
A cyclic group of order n may be represented by a pyramid with a regular n-sided polygon for a base. A 
dihedral group with 2n elements may be represented by a prism or antiprism with n-sided regular 
polygons. 

The alternating groups, A4 and As, and the symmetric group, S4' may be viewed as the 

symmetry group of a tetrahedron, icosahedron (or its dual, the dodecahedron), and octahedron (or its dual, 
the cube), respectively. Historically, the groups A4, S4' and As were referred to as the tetrahedral, 

octahedral, and icosahedral groups. 



Tetrahedron 
Alternating Group A4 
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Prism 
Dihedral Grou 

Cube 
Symmetric Group S4 

Figure 4 

Antiprism 
Dihedral Group 

Dodecahedron 
Alternating Group As 

It turns out that Zn' and, Dn, for any positive integer n, along with A4, S4' and As make up a 
complete list of the groups which can be described as the rotational symmetry group of a convex 
polyhech-on. 

Sylow p-Subgroups of Symmetry Groups 

Subgroups of symmetry groups may be described by looking at substructures of the polyhedron. 
For example, the group of rotations of the dodecahedron is As, group with 60 = 22 ·3·5 elements. By 

this factorization, we see that As has Sylowp-subgroups for p = 2, 3, and 5. Each of these subgroups may 

. be thought of as acting on a substructure of the dodecahedron. 

Definition Let G be a fmite group and let p be a prime which divides 101. If pk divides 101 and pk+l 

does not divide 101 then any subgroup of G of order pk is called a Sylow p-subgroup of G. 

Sylow 2-subgroup 

Figure 5 
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The Sylow 2-subgroup may be seen as acting on 6 edges lying in 3 perpendicular planes. The 
Sylow 3-subgroup acts on two vertices, which are diametrically opposed. The Sylow 5-subgroup acts on 
two faces, which lie in parallel planes. 

By counting the rotational axes of various orders, it is possible to determine the numbers Sylow 
p-subgroups. 

p number of axes of number of elements number of elements in number of Sylow p-
orderp on a of order p in As a Sylow p-subgroup subgroups 

dodecahedron 
2 e 30 15·1 = 15 4 ~=5 -=-=15 

* 2 2 4-1 
3 v 20 10·2=20 3 20 =10 -=-=10 

2 2 3-1 
"5 f = 12 =6 6·4=24 5 24 =6 

2 2 5-1 

Figure 6 

* Note that As has no elements of order 4 since this would be represented by an odd permutation. This 

means the Sylow 2-subgroups are isomorphic to Z2" E9 Z2. 
Students may easily verify that this calculation is correct by applying Sylow s Third Theorem. 

Sylow s Third Theorem 
Let np denote the number of Sylow p-subgroups. 

Then np == 1 (mOd p) and np divides IGI. 

Orbit-Stabilizer Theorem 

Creating new regular polyhedra from old ones by truncating or steUating may result in the new 
polyhedron having the same rotational symmetry as the original. For example, consider the icosahedron 
and the truncated icosahedron. 

Icosahedron Truncated Icosahedron 
centered at a hexa on 

Figure 7 

Truncated Icosahedron 
centered at a pentagon 

A useful tool for determining the size of a finite symmetry group involves looking at orbits and 
stabilizers as the symmetry group acts on the polyhedron. The group of rotations of a polyhedron may be 
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thought of as permuting around some geometric set of the polyhedron. We say the group is acting on the 
vertices, edges, faces, or some other set of components. 

Definition Let G be a group of rotations acting on the set I of components of a polyhedron. 
For each i E I, the orbit of i under G is defmed by orba (i) = {q>(i): q> E G} . 
For each i E I, the stabilizer of i in G is defined by staba (i) = {q> E G: q>( i) = i}. 

Orbit-Stabilizer Theorem 
Let G be the group of rotations acting on the set I of components of your model. For any i E I, 

IGI = lorba(i)llstaba(i)I· 

3-Dimensional . 
truncated icosahedron Also 

known as a Buckyball, 
or a soccerball 

Acting on faces 
i = a pentagonal face 

with a star 
orbit(i) = 12 pentagons 

stabilizer(i) = 5 rotations 

FigureS 

Acting on faces 
i = a hexagonal face 

with a triangle 
orbit(i) = 20 hexagons 

stabilize i = 3 rotations 

Whether viewing from pentagonal faces or hexagonal faces, the Orbit-Stabilizer Theorem gives 
us that there are 12·5 = 20·3 = 60 elements in the rotational symmetry group of the truncated 
icosahedron. Since no new rotations have been introduced in truncating, the rotational symmetry group is 
As, same as the icosahedron. 

Proofs of Euler s Formula 

Euler s Formula (for Convex Polyhedra) 
Let P be a convex polyhedron, and let v, e, and f denote, respectively, the numbers of vertices, 

edges, and faces of P. 
Then v-e+ /=2. 

Euler s first strategy for a proof (c. 1751) of his formula involved starting with a convex 
polyhedron and removing a vertex along with all of the edges and faces, which adjoin it. New triangle 
faces are added over the hole that has been created. With each step in this process, the value for v - e + / 
stays the same. The desired result is to continue the process until a tetrahedron is reached and since 
v - e + / = 2 for a tetrahedron, then this must be the case for the original polyhedron. This process has a 
flaw in that at a given stage you may not be left with a polyhedron. 
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In 1813, Cauchy gave a proof of Euler s formula, which involved projecting a convex polyhedron 
onto the plane in the manner used in this discussion. He argued that the value of v - e + f is the same for 
both the original polyhedron and its projection in the plane. Further, it is possible to add edges to the 
planar graph so that all the faces are triangles and v - e + f remains the same. Finally, he showed that 
v - e + f = 2 for the planar graph with triangle faces. 

This method is exhibited for the icosahedron below. 

Icosahedron Remove a vertex Remove a vertex 

Add edges Remove a vertex Add edges Remove a vertex 

Remove a vertex Remove a vertex Remove a vertex Add edges 

Remove a vertex 

Figure 9 

A novel proof of Euler s Formula, which is suitable for middle school students, describes a planar 
graph whose edges are dams, vertices are posts holding the dams together, the bounded faces are dry 
chambers and where the face at .infmity is the ocean. The idea is to remove a dam (edge) so that the ocean 
rushes in and fills a chamber (face) with water. In this fashion, one dam (edge) is removed and one 
chamber (face) is flooded so that v - e + f remains the same. We continue removing one dam (edge) so 
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one chamber (face) is flooded until we have the ocean filling all of the chambers. At this fmal stage, we 
have all v posts (vertices) intact and I ocean (face). By this process, the posts have stayed connected by 
dams so there are v-I dams (edges). 

Since v - e + f has stayed the same, we have v - e + f = v - (v - 1) + 1 = 2. 

Planar graph, ocean in gray First dam removed Several dams removed 

Process continues Final stage 

Figure 10 

One fmal note is in order. Verifying that a property holds for a particular polyhedron obviously is 
no guarantee that the property holds for all polyhedra. Also, a student s verification that a conjecture 
holds with models should not replace a rigorous proof but rather help in gaining confidence that a 
conjecture is true while the student struggles with a proof. . 

Questions for Students to Ask when Testing a Conjecture with a Model 

1. Is the model on which I am focused represent the properties of all or most of the polyhedra in the 
category of the conjecture? 

2. Can the steps involved in verifying the conjecture is true for the model be translated into logical 
steps in a rigorous proof for all polyhedra in a particular category? 
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