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Abstract 

BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

A mathematical concept has inspired me to create a series of sculptures. While the media, 
surface forms, and general impact of these constructions may vary considerably, there is an 
ancient underlying structure common to the series. The mathematical basis behind these 
sculptures is the chiral icosahedral symmetry group. This underlying form binds these pieces in a 
way that may be obvious to a mathematician accustomed to the study of patterns, yet invisible to 
a casual observer. For centuries, geometry has been considered fundamental to an educated 
mind and has been both tool and inspiration to many artists, yet it has lost this status in our 
current culture. One purpose of my artwork is to show that geometry still has a power and a 
relevance. I hope to prod the viewer into seeing the type of deeper connection which is the 
subject of this series of sculptures. In addition, there is a natural aesthetic which many artists 
have found in polyhedral symmetry. 

Icosahedral Symmetry 

The ancient Greeks who wrote ofthe five 
Platonic solids certainly appreciated the 
geometric beauty which they embody. 
When any of us now turns a dodecahedron 
in our hand we see the same quintessential 
form which inspired Pythagoras and many 
'Others through the ages. Leonardo 
Da Vinci's drawings of the icosahedron and 
the dodecahedron, published in 1509, are 
shown as Fig 1. Although the 
dodecahedron may appear superficially 
very different from the icosahedron, there 
is a level of analysis at which they are 
identical. 

We are all accustomed to geometric 
abstraction in which we think of ideal 

Fig. 1 Dodecahedron and icosahedron, by Leonardo 
Da Vinci for Luca Pacioli's The Divine Proportion. 

versions of physical objects. For example we may hold a handful of marbles and imagine an 
ideal Platonic sphere more perfect than any marble~ free of even the atomic-scale imperfections 
present in any physical sphere. Similarly, we can imagine the ideal dodecahedron and the ideal 
icosahedron as distinct objects inhabiting a Platonic domain of polyhedra, free from the 
imperfections of any cardboard polyhedron model. Yet there is a deeper level- one floor down 
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in Platonic structure - at which the ideal 
dodecahedron and ideal icosahedron are but two 
models of a single, more basic form which they 
share. 

The deep structure common to the dodecahedron 
and icosahedron is termed their symmetry group. 
It is the pattern of rotations and reflections 
inherent in their geometric form. For example, a 
line passing through the centers of two opposite 
faces of a dodecahedron is a 5-fold axis of the 
dodecahedron. Rotating the dodecahedron about 
this axis through an angle of 72 degrees (or any 
multiple of 72 degrees) leaves it appearing 
unchanged. Altogether, there are six such axes 
for a dodecahedron (one axis for each pair of 
opposite faces), arranged at very specific angles 
to each other in space. The icosahedron, though 
made of triangles instead of pentagons, also has 

Fig. 2. The 31 symmetry axes of the 
icosahedron and dodecahedron, superimposed so 
they align (six 5-fold, ten 3-fold, fifteen 2-fold). 

six 5-fold axes of symmetry arranged atthe same angles. In the icosahedron, the 5-fold axes 
pass through pairs of opposite vertices. Similarly, both solids have ten 3-fold axes. They pass 
through opposite vertices of the dodecahedron and through the centers of opposite faces of the 
icosahedron. They also each have fifteen 2-fold axes which pass through the opposite edge
midpoints in either case. The total arrangement of symmetry axes is identical in the two cases as 
Fig. 2 illustrates. If one starts with a dodecahedron or icosahedron, constructs all of its 
symmetry axes, and then erases the polyhedron, one can not tell whether it was the dodecahedron 
or icosahedron that one started with. 

The symmetry group common to the icosahedron and 
dodecahedron is usually caned icosahedral, though it 
lies behind other polyhedra as well. It is different 
from the symmetry of many other polyhedra; for 
example, the cube has three 4-fold axes, four 3-fold 
axes, and six 2-fold axes. The sculptures shown 
below all have icosahedral symmetry. To fully 
understand them, one must see through not only the 
irregularities of technique which any physical object 
must manifest, but deeper-past their form-to the 
common symmetry group which binds them. 

There is another aspect of polyhedral symmetry 
beyond axes of rotation. One can also look at the 
mirror planes of a polyhedron. The planes of 
symmetry are the imaginary planes passing through 
the center of the object which reflect one side to 

Fig. 3 The 15 icosahedral symmetry 
planes, each represented by a disk. 

exactly match the other side. Again, the dodecahedron and icosahedron exactly agree in their 
symmetry planes. Each has fifteen planes of symmetry in exactly the same arrangement. Fig. 3 
shows this arrangement, with one circle for each symmetry plane. The planes divide the surface 
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of a sphere into 120 right triangles called Mobius triangles, which are alternately left-handed and 
right-handed. The symmetry axes are located where the planes intersect. 

When one studies the possible sets of symmetries, what mathematicians call group theory, it 
turns out that only a relatively small number of polyhedral symmetry structures are possible. In 
the case of icosahedral symmetry, there are two possibilities: an object either has fifteen mirror 
planes or it has none. An object with no mirror planes is called chiral (Latin for hand). A chiral 
object appears different in a mirror; it comes in left-hand and right-hand forms. The opposite, 
e.g., the icosahedron which has one or more planes of reflection, is called reflexible. 

Examples 

In nature, icosahedral symmetry does not show up at 
human scales, only at microscopic scales. The icosahedral 
symmetry of certain species of radiolaria are well known 
from the drawings of Ernst Haeckel. I surmise that he 
found this symmetry particularly attractive since he chose 
an icosahedral form for the first figure of the first plate of 
his beautiful 1904 collection, Artforms in Nature. It is 
shown here as Fig. 4. Other natural examples, all 
discovered relatively recently, include the forms of certain 
viruses, microscopic quasicrystals, and "fullerene" 
molecules. (Incidentally, crystals of iron pyrite do form as 
dodecahedra with equal 5-sided faces, but the faces are not 
regular pentagons, and so the crystals do not have any 5-
fold axes of symmetry; they are not of the icosahedral 
symmetry group.) 

Although the ancients discovered and created objects with 
icosahedral symmetry, I know of no surviving description 
of any chiral icosahedral object from that period. It is likely 
that Archimedes discovered the snub icosidodecahedron, 
and that this was the first example of chiral icosahedral 
symmetry known to humankind, but his writing on this 
topic is lost and only inferred from later commentaries. 
Kepler independently rediscovered Archimedes' lost snub . 
icosidodecahedron, and published it in his 1625 book 
Harmonies of the World; see Fig. 5. One pentagon and four 
triangles meet at each vertex. 

However, before Kepler, there was an independent 
discovery of this symmetry. The earliest surviving example 
I know of an object with chiral icosahedral symmetry is a 
1568 drawing by Jamnitzer. His Perspectiva Corporum 

Fig. 4 Radiolarian, by Haeckel. 

Fig •. 5 Snub icosidodecahedron, 
discovered by Archimedes, 
rediscovered by Kepler. 

Regularium contains many beautiful imagined objects with icosahedfal symmetry, e.g., his 
monument shown as Fig 6. However, only one, shown here as Fig 7, has chiral icosahedral 
symmetry. To come up on his own with something of this class is an enormous artistic and 
intellectual achievement in my view. 
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Fig. 6 An icosahedral monument by 
Wentzel Jamnitzer. 

Fig.7 Detail of a drawing by Jamnitzer. 

These developments were part of a surge of interest in geometry and polyhedra in Renaissance 
Europe. Polyhedra were valued not just for their classical associations, but were considered 
worthy objects of an artist's study and important tests of an artist's mastery of the newly 
developed techniques of perspective. In Albrecht Durer's 1525 Painter's Manual, he not only 
teaches techniques of perspective, but he is the first 
to show polyhedra in print as an unfolded net. His 
net of the icosahedron is shown as Fig 8. 

Although icosahedral forms have been created 
through the centuries since then, we now skip ahead 
to our century's most notable artist of polyhedra. 
M.e. Escher is best known for his tessellations, but 
he also had a great affmity to polyhedra. A chiral 
icosahedral object is featured in his lithograph 
Gravity, which shows a small stellated dodecahedron 
perforated in a chiral manner and then populated with 
colorful creatures. Even more relevant is that Escher 
made a number of sculptures with chiral icosahedral 
symmetry, including a puzzle of twelve intertwined 
starfish, and an icosahedral candy tin design. Fig. 9 
shows Escher's carved maple flower, made in 1958. 

Fig. 8 The eariest known net of an 
icosahedron, by Albrecht Durer. 



Method 

A simple general method for seeing a construction with 
icosahedral symmetry is available, if the object is to be 
reflexible. The icosahedral kaleidoscope, invented by 
Mobius in 1852, is a set of three mirrors, each a thin 
circular wedge, with angles of20.91, 31.72, and 37.37 
degrees, respectively. They are arranged in the form one 
of the small triangles shown in Fig. 3, i.e., the points of the 
wedges meet at the center of the sphere, with the reflective 
side facing into the triangular region. If any object is 
placed in the triangle and viewed from inside the triangle, 
the "hall of mirrors effect" causes it to be replicated with 
the symmetry of an icosahedron. Details can be found in 
Coxeter [1963], but this method is not suitable when one 
is interested in chiral objects, which have no planes of 
symmetry. 

To physically construct an object with chiral icosahedral 
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Fig. 9 Carved maple sculpture in the 
form of twelve flowers arranged as a 
dodecahedron, by M.C. Escher. 

symmetry, one first imagines the symmetry axes, then places components about them in the 
proper positions. For example, if one starts with sixty identical copies of anything, they can be 
placed on the surface ofa sphere, five around each of the twelve points where the six 5-fold axes 
penetrate the sphere. However, if one starts with objects that have 5-fold symmetry, then only 
twelve are needed, as each can be centered over an axis. Similarly, twenty components with 3-
fold symmetry can be placed at the 3-fold points, or thirty components with 2-fold symmetry can 
be placed on the 2-fold points. 

One could analogously assemble 120 copies of a component (60 left-hand pieces and 60 
righthand pieces) to construct a reflexible icosahedral model, but that symmetry group was not 
the subject of this series. 

Constructions 

In these constructions, the components are carefully designed both for the overall form which the 
assemblage is to achieve and for the necessary lengths and angles required to make the 
components meet properly. In some cases I have selected mass-produced elements to use as 
components, but in most cases I fabricate the elements to be assembled. However, the most 
challenging part of the construction of the following sculptures is the construction of the 
necessary jigs to hold the components together at the proper relative positions for assembly. I 
usually spend far more time constructing jigs than actually using the completed jigs to assemble 
components. 

The sculptures shown here as Figs. 10-18 were all constructed by the author in 1997, as part of a 
series. Each displays the identical chiral icosahedral symmetry, but with very different forms 
and media. I leave it to the reader to locate the thirty-one symmetry axes in each case, and to 
decide if the symmetry carries a natural aesthetic within each piece. 
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Fig. 10. I'd like to make one 
clear. (18") This is a construction of30 identical 
pieces of clear acrylic plastic (plexiglass). Each 
piece started as a plastic parallelegram with two 
polished edges, then was heated (baked in an oven 
at 300 F for 3 minutes) and bent into a form with 
2-fold symmetry. Cooled in ajig which 
maintains two edges at the proper relative angle, 
each piece is centered on a 2-fold axis of 
symmetry, and exactly spans the 63.4 degree 
angle between two 5-fold axes. These edges were 
beveled to a 72 degree angle, so five fit around an 
axis, and glued with a solvent cement. 

Fig. 11. The Plastic Tableware of Damocles. 
(25") This is a construction of 180 plastic 
dinner knives, in black, white~ and grey. It 
can be seen as sixty equilateral triangles, each 
containing one knife of each color. The 
triangles are arranged in the form of a 
dodecahedron in which the pentagons are 
replaced by concave dimples of five 
equilateral triangles. 



Fig. 12. Moonlight. (21") This is an 
icosahedral topological surface with one side and six 
edges, inspired by the work of Brent Collins. It is 
constructed of paper machee over a steel (hardware 
cloth) framework, and painted in white latex/acrylic. 
The twelve holes contain the 5-fold symmetry axes, and 
the six edges are each 5-fold symmetric "equators" 
about one 5-fold axis. 

Fig. 14. Fire and Ice. (24") Sixty identical pieces of 
oak and ten strips of brass are interwoven. The wooden 
components were cut on a computer-controlled router 
table, then hand beveled to the proper dihedral angles. 
After the wood was glued, the brass strips were woven 
through the wood and each other, and soldered into 
loops. Each brass loop has 3-fold symmetry and circles 
a 3-fold axis of the whole. 
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. Fig. 
30 identical pieces of copper. Each piece was cut into 
the shape of an elongated ellipse, hand formed into a 
curve with 2~fold symmetry, and the assemblage was 
soft soldered. The intention was to create a form both 
organic and geometric, reminiscent of a radiolarian with 
a spiked spherical body containing internal structure. 
Each copper ellipse spans one edge of an icosahedron, 
along a detoured route which passes through the 
interior. 

Picnic. This is 
major spherical assemblages of plastic tableware: one 
ball consists of 150 knives in three colors, one of 180 
spoons in six colors, and one of240 forks in six 
colors. The plastic utensils were jigged on 
frameworks built from a commercial plastic 
construction toy, glued with solvent cement, and then 
the jigs were disassembled and removed through the 
spaces between the utensils. The supporting booms 
are steel tubes. 
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Fig. 16. Fork component of Fig. 15 (23"). Fig. 17. Knife component of Fig. 15 (29"). 

Fig. 18. Spoon component of Fig. 15 (32"). 


